本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布1道思考题(共15道,思考题一般与下周授课内容密切相关),供大家思考和解答。每周一题将通过“高等代数官方博客”(以博文的形式)和“22级高等代数在线课群”(以课群话题的形式)这两个渠道同时发布。有兴趣的
七、(10分) 证明: 存在 $n$ 阶实方阵 $A$, 使得 $$\sin A=\begin{pmatrix} \dfrac{1}{2} & \dfrac{1}{4} & \cdots & \cdots & \dfrac{1}{2^n} \\[2mm] & \dfrac{1}{2} & \dfrac{1}{4} & \cdots & \dfrac{1}{2^{n-1}} \\ & & \dd
参考资料 CSP初赛知识点梳理 | 蔡勒公式及其推导 1. 基础数论 - 计算日期 可以用可爱的蔡勒公式,首先给出定义: \(c\) 是已经经过的世纪数,\(y\) 是世纪内的年份,\(m\) 是月份,\(d\) 是日期数,\(w\) 是星期。 比如:2022.9.14 中 \(c=20,y=22,m=9,d=14\),而 \(w\) 就是我们要求的。 于是蔡
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 选择性必修第一册同步巩固,难度2颗星! 基础知识 直线、圆的位置关系 1 三种位置关系 2 判
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 选择性必修第一册同步巩固,难度2颗星! 基础知识 两条直线的交点 设两条直线的方程是\(l_1 ∶ A_
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 选择性必修第一册同步巩固,难度2颗星! 基础知识 直线的点斜式方程 若直线的斜率为\(k\),且过定点
更好的阅读体验 从《具体数学》第五章 二项式系数中选了一些个人认为比较 useful 的内容,添加了部分解释和证明。 组合数 在 \(n\) 个元素中选择 \(m\) 个的方案数,记作 \(\dbinom{n}{m}\),定义为: \[\dbinom{n}{m}=\dfrac{n!}{m!}{(n-m)!} \]其中 \(n,m\) 为非负整数。 当 \(m\) 为非
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 选择性必修第一册同步巩固,难度3颗星! 基础知识 点A、B间的距离 \(A B=|\overrightarrow{A B}|=
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 选择性必修第一册同步巩固,难度2颗星! 基础知识 求异面直线a ,b所成的角 已知\(a\),\(b\)为两异
\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\) 必修第一册同步拔高,难度2颗星! 基础知识 基本不等式 若\(a>0\) ,\(b>0\),则 \(a+b \geq 2 \sqrt
1 第一章习题 1.1 第一次作业 1.1.1 两个随机变量的函数的概率密度求解 法1:先求解概率分布函数,再由分布函数求导得到概率密度。 例题:已知随机变量\(X\)服从参数为1的指数分布,求\(Y = \sqrt{2X}\)的概率密度函数。 解答:由题意知,随机变量\(X\)的概率密度为: \[f(x) = \begin{cases
D 设 \(f_{t,p}\) 代表在 \(t\) 时间点时人在 \(p\) 点的最大收益,在这一步他可以 \(p\) 增加,不动,\(p\) 减少。于是得出状态转移方程:\(f_{t,p} = \max(f_{t-1,p-1}, f_{t-1,p}, f_{t-1,p+1}) + a_{t,p}\)。 E 设 \(f_i\) 是第 \(i\) 轮的最大收益,策略一定是当骰子点数 \(\geq x\)
卡特兰数(Catalan 数)学习笔记 一、引入 问题 1 由 \(n\) 个 \(+1\) 和 \(n\) 个 \(-1\) 组成的 \(2n\) 项序列 \(a_1,a_2,\cdots,a_{2n}\),求有多少种方案满足其部分和 \(a_1+a_2+\cdots+a_k \ge 0\ (k=1,2,\cdots,2n)\)。 分析 设满足条件的方案数(即答案)为 \(C_n\),不满足条件的方案
前言 题目传送门! 更好的阅读体验? 普及组月赛第一题。别的题解语言有点高深,我补篇题解。 思路 显然,\(\lfloor \dfrac{l}{x}\rfloor, \lfloor \dfrac{l+1}{x}\rfloor, \cdots, \lfloor \dfrac{r}{x}\rfloor\) 是连续的整数。 而且,显然有 \(\operatorname{gcd}(c, c+1) = 1\)。 换句
前言 本次比赛:初一训练5.21 / 编号531 题目难度中等偏上,有几题比较简单,有两三题较难。 T1 题目:gdfzoj1441 思路: 算是一道暴力题。 由于 \(h_{i, j}\) 范围很小,考虑二分答案。 二分答案的范围应该是 \([0, 110]\)。 对于 chk() 函数,可以暴力枚举所有差为 \(\texttt{mid}\) 的数对,
在OI比赛中,如果能够灵活地运用一些数学小技巧,是能够很好地优化计算的时间和正确性的。 既然说了是小技巧,那么这些指的都是一些技巧,一般是不会单独成题的。 光速幂 有的时候,我们要去求解一个数或者一个矩阵的若干次幂,而这个指数在一般情况下是暴力无法接受的,这个时候我们会想到使用
词客有灵应识我,霸才无主独怜君。 主要记录一些 不太熟悉的式子,以提高熟练度。 一个定理 \[\forall a,b,c\in \mathbb{Z},\left\lfloor\dfrac{a}{bc}\right\rfloor = \left\lfloor{\dfrac{\left\lfloor\dfrac{a}{b}\right\rfloor}{c}}\right\rfloor \]证明:$$\dfrac{a}{b} = \left\l
扩展欧几里得 用途: 求解逆元、好像还可以解二元一次不定方程。 说句闲话:数学课老师让解二元一次方程组,讲题直接扩欧:“这显然是跑两遍EXGCD,求出最小解加膜数取个交集即可。” 于是我写了满满一黑板递归。。。 初初初阶 推导 我们已知 $a,b$ 要求 $x,y$, 使 $ax + by = \gcd(a,b)$
蒟蒻的组合数学实在是太弱了,所以在初赛之前赶紧来复习一下,大部分内容由 \(OI-Wiki\) 整合而来。 普及知识点标 \(J\),提高知识点标 \(S\) 加法原理&乘法原理(\(J\)) 加法原理 假设完成一项任务有 \(n\) 种方案,每种方案的办法数目为 \(a_i\),则完成这项任务的总方法数为 \(a_1+a_2+\cdo
\(\texttt{Problem 1}\) \(\texttt{Describe}\) 在小于 \(10\) 的自然数中,\(3\) 或 \(5\)的倍数有 \(3,5,6\) 和 \(9\),这些数之和是 \(23\)。 求小于 \(1000\) 的自然数中所有 \(3\) 或 \(5\) 的倍数之和。 \(\texttt{Solution}\) 可以考虑容斥,我们定义函数 \(S(x)\) 为小于 \(100
哼哼啊啊啊啊啊! 口胡三次方程求根公式 \[ax^3+bx^2+cx+d=0 \]\[x^3+\dfrac bax^2+\dfrac cax+\dfrac da=0 \]\[f(x)=ax^3+bx^2+cx+d \]\[f'(x)=3ax^2+2bx+c \]\[f'(x)=0 \Longrightarrow x=\dfrac{-2b \pm \sqrt{4b^2-12ac}}{6a} \]\[=\dfrac{-b \pm \sqrt{b
1.考虑用无穷序列的趋近表达实数 1.1 趋近于 \(\bf 0\) 比如,\(\dfrac 11,\dfrac 12,\dfrac 13,\dots \to 0\)(图为 \(y=\dfrac 1{\lfloor 20x\rfloor}\)) 这个序列趋近 \(0\),我们应该给一个定义了。有时候我们会说这个序列的最后一项是 无穷小量 \(\boldsymbol \varepsilon\),他小于
题意 有\(n\)个地方,编号为\(1\sim n\),每个地方有一个骰子,骰子上标有整数\(0,1,\cdots , A_i\),一个人在\(i\)掷骰子到\(j\),那么他会走到编号为\(i+j\)的地方。若一个人不在编号为\(n\)的地方,那么他会一直投骰子。求投骰子的期望次数。\(n \le 2 \times 10^5,A_i \le n - i\). Solut
万能欧几里得算法 基本描述 对于一条直线 \(\dfrac {px+r}{q}\),满足 \(p>0,q>0,r\in[0,q-1]\),求解有关 \(\lfloor\dfrac {px+r}{q}\rfloor,x\) 的一些函数。 考虑在坐标系上考虑这条直线,从 \((0,0)\) 开始走。 定义当直线穿过一条形如 \(y=h(h\in\Z)\) 的横线(下文会称其为横线)时进
概念 我们考虑这样一个问题:求 \(\sum_{i=1}^{k} \lfloor \dfrac{n}{i} \rfloor\) 我们以 \(n=7,k=7\) 为例子,先画出 \(f(x) = \dfrac{7}{x} \ (1 \leq x \leq 7)\) 的图像 因为我们的取值是向下取整的,我们描出所有可能的取值 注意到所有的点按照取值可以分成若干段 我们可以一次