ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

1.4.2(3) 用空间向量研究距离问题

2022-09-02 22:32:18  阅读:194  来源: 互联网

标签:1.4 overrightarrow cdot dfrac sqrt 距离 平面 向量 vec


\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性必修第一册同步巩固,难度3颗星!

基础知识

点A、B间的距离

\(A B=|\overrightarrow{A B}|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}\).
【例】若\(P(0,1,-2)\),\(Q(1,3,-1)\),则\(|PQ|=\)\(\underline{\quad \quad}\) .
解析 \(|P Q|=\sqrt{1+4+1}=\sqrt{6}\).
 

点Q到直线l 距离

若\(Q\)为直线\(l\)外的一点,\(P\)在直线上,\(\vec{a}\)为直线\(l\)的方向向量, \(\vec{b}=\overrightarrow{P Q}\),则点\(Q\)到直线\(l\)距离为
\(d=\dfrac{1}{|\vec{a}|} \sqrt{(|\vec{a}||\vec{b}|)^{2}-(\vec{a} \cdot \vec{b})^{2}}\)
 

公式推导
image.png
如图, \(d=|\vec{b}| \sin \theta=|\vec{b}| \sqrt{1-\cos ^{2} \theta}=|\vec{b}| \sqrt{1-\left(\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)^{2}}=\dfrac{1}{|\vec{a}|} \sqrt{(|\vec{a}||\vec{b}|)^{2}-(\vec{a} \cdot \vec{b})^{2}}\) .
① 不要死记公式,而要理解其公式推导过程;
② 也可先求\(PQ\)在直线\(l\)上的投影,再用勾股定理求出距离\(d\).
【例】已知直线\(l\)的方向向量为 \(\vec{a}=(-1,0,1)\),点\(A(1,2,-1)\)在\(l\)上,则点\(P(2,-1,2)\)到\(l\)的距离为\(\underline{\quad \quad}\) .
解析 根据题意,得 \(\overrightarrow{P A}=(-1,3,-3)\), \(\vec{a}=(-1,0,1)\),
\(\therefore \cos <\vec{a}, \overrightarrow{P A}>=\dfrac{1+0-3}{\sqrt{2} \times \sqrt{19}}=-\sqrt{\dfrac{2}{19}}\),
\(\therefore \sin <\vec{a}, \overrightarrow{P A}>=\sqrt{\dfrac{17}{19}}\);
又 \(\because|\overrightarrow{P A}|=\sqrt{19}\),
\(∴\)点\(P(2,-1,2)\)到直线\(l\)的距离为 \(|\overrightarrow{P A}| \sin <\vec{a}, \overrightarrow{P A}>=\sqrt{19} \times \sqrt{\dfrac{17}{19}}=\sqrt{17}\).
 

平行线m与平行线n的距离

在直线\(m\)上任取一点\(Q\),再求点\(Q\)到直线\(n\)的距离便可.
 

直线点Q到平面α的距离

若点\(Q\)为平面\(α\)外一点,点\(M\)为平面\(α\)内任一点,平面\(α\)的法向量为 \(\vec{n}\),则Q到平面\(α\)的距离等于 \(\overrightarrow{M Q}\)在法向量 \(\vec{n}\)方向上的投影的绝对值,即 \(d=\dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}|}\) .
公式推导
image.png
如图, \(d=|\overrightarrow{M Q}| \sin \alpha=|\overrightarrow{M Q}||\cos \langle\vec{n}, \overrightarrow{M Q}\rangle|=|\overrightarrow{M Q}| \cdot \dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}||\overrightarrow{M Q}|}=\dfrac{|\vec{n} \cdot \overrightarrow{M Q}|}{|\vec{n}|}\) .
 

【例】 已知平面\(α\)的一个法向量 \(\vec{n}=(-2,-2,1)\),点\(A(-1,3,0)\)在\(α\)内,则\(P(-2,1,4)\)到\(α\)的距离为\(\underline{\quad \quad}\).
解析 根据题意,可得\(A(-1,3,0)\),\(P(-2,1,4)\),
\(\therefore \overrightarrow{P A}=(-1,-2,4)\),
又\(∵\)平面\(α\)的一个法向量 \(\vec{n}=\left(-2, -2,1\right)\),点\(A\)在\(α\)内,
\(∴P(-2,1,4)\)到\(α\)的距离等于向量 \(\overrightarrow{P A}\)在 \(\vec{n}\)上的投影的绝对值,
即 \(d=\dfrac{|\overrightarrow{P A} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{|-1 \times(-2)+(-2) \times(-2)+4 \times 1|}{\sqrt{4+4+1}}=\dfrac{10}{3}\).
 

直线 a平面α之间的距离

当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.
 

平面间的距离

利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.
 

基本方法

【题型1】点到点的距离

【典题1】 如图,在空间直角坐标系中,有一棱长为\(2\)的正方体\(ABCD-A_1 B_1 C_1 D_1\),\(A_1 C\)的中点\(E\)到\(AB\)的中点\(F\)的距离为 (  )
image.png
 A.\(2\sqrt{2}\) \(\qquad \qquad\) B. \(\sqrt{2}\) \(\qquad \qquad\) C.\(2\)\(\qquad \qquad\) D.\(1\)
解析 在空间直角坐标系中,有一棱长为\(2\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)
\(∴A_1 (2,0,2)\),\(C(0,2,0)\),\(A_1 C\)的中点\(E(1,1,1)\),
\(A(2,0,0)\),\(B(2,2,0)\),\(AB\)的中点\(F(2,1,0)\),
\(∴A_1 C\)的中点\(E\)到\(AB\)的中点\(F\)的距离为 \(|E F|=\sqrt{(2-1)^{2}+(1-1)^{2}+(0-1)^{2}}=\sqrt{2}\).
故选:\(B\).
image.png
 

巩固练习

1若\(O\)为坐标原点, \(\overrightarrow{O A}=(1,1,-2)\), \(\overrightarrow{O B}=(3,2,8)\), \(\overrightarrow{O C}=(0,1,0)\),则线段\(AB\)的中点\(P\)到点\(C\)的距离为(  )
  A. \(\dfrac{\sqrt{165}}{2}\) \(\qquad \qquad\) B. \(2 \sqrt{14}\) \(\qquad \qquad\) C. \(\sqrt{53}\) \(\qquad \qquad\) D. \(\dfrac{\sqrt{53}}{2}\)
 

2如图,在正四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,\(AA_1=2\),\(AB=BC=1\),动点\(P\),\(Q\)分别在线段\(C_1 D\)、\(AC\)上,则线段\(PQ\)长度的最小值是\(\underline{\quad \quad}\).
image.png
 

参考答案

  1. 答案 \(D\)
    解析 \(\because \overrightarrow{O P}=\dfrac{\overrightarrow{O A}+\overrightarrow{O B}}{2}=\left(2, \dfrac{3}{2}, 3\right)\)
    \(\therefore \overrightarrow{P C}=\overrightarrow{O C}-\overrightarrow{O P}=\left(-2,-\dfrac{1}{2},-3\right)\),
    \(\therefore|P C|=\dfrac{\sqrt{53}}{2}\), 答案:\(D\)

  2. 答案 \(\dfrac{2}{3}\)
    解析 建立如图所示的空间直角坐标系,则\(A(1,0,0)\),\(B(1,1,0)\),\(C(0,1,0)\),\(C_1 (0,1,2)\),
    设 \(\overrightarrow{D P}=\lambda \overrightarrow{D C_{1}}\), \(\overrightarrow{A Q}=\mu \overrightarrow{A C}\),\((λ,μ∈[0,1])\).
    \(\therefore \overrightarrow{D P}=\lambda(0,1,2)=(0, \lambda, 2 \lambda)\),
    \(\overrightarrow{D Q}=\overrightarrow{D A}+\mu(\overrightarrow{D C}-\overrightarrow{D A})=(1,0,0)+\mu(-1,1,0)=(1-\mu, \mu, 0)\).
    \(\therefore|\overrightarrow{P Q}|=\sqrt{(1-\mu)^{2}+(\mu-\lambda)^{2}+4 \lambda^{2}}\)\(=\sqrt{5\left(\lambda-\dfrac{\mu}{5}\right)^{2}+\dfrac{9}{5}\left(\mu-\dfrac{5}{9}\right)^{2}+\dfrac{4}{9}} \geqslant \sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\),
    当且仅当 \(\lambda=\dfrac{\mu}{5}, \mu=\dfrac{5}{9}\),即 \(\lambda=\dfrac{1}{9}, \mu=\dfrac{5}{9}\)时取等号.
    \(∴\)线段\(PQ\)长度的最小值为 \(\dfrac{2}{3}\).
    image.png
     

【题型2】点到线的距离

【典题1】 \(P\)为矩形\(ABCD\)所在平面外一点,\(PA⊥\)平面\(ABCD\),若已知\(AB=3\),\(AD=4\),\(PA=1\),则点\(P\)到\(BD\)的距离为\(\underline{\quad \quad}\).
解析 方法一 \(∵\)矩形\(ABCD\)中,\(AB=3\),\(AD=4\),
\(\therefore B D=\sqrt{9+16}=5\),
过\(A\)作\(AE⊥BD\),交\(BD\)于\(E\),连结\(PE\),
image.png
\(∵PA⊥\)平面\(ABCD\),\(∴PA⊥BD\),
又 \(AE⊥BD\) \(∴BD⊥\)平面\(PAE\),
\(∴PE⊥BD\),即\(PE\)是点\(P\)到\(BD\)的距离,
\(\because \dfrac{1}{2} \times A B \times A D=\dfrac{1}{2} \times B D \times A E\),
\(\therefore A E=\dfrac{A B \times A D}{B D}=\dfrac{12}{5}\),
\(\therefore P E=\sqrt{P A^{2}+E^{2}}=\sqrt{1+\dfrac{144}{25}}=\dfrac{13}{5}\),
\(∴\)点\(P\)到\(BD\)的距离为 \(\dfrac{13}{5}\).
方法二 依题意可知,\(PA\)、\(AB\)、\(AD\)三线两两垂直,
如图建立空间直角坐标系
image.png
\(∴P(0,0,1)\),\(B(3,0,0)\),\(D(0,4,0)\),
\(\therefore \overrightarrow{B P}=(-3,0,1)\), \(\overrightarrow{B D}=(-3,4,0)\),
\(\therefore \cos <\overrightarrow{B P}, \overrightarrow{B D}>=\dfrac{\overrightarrow{B P} \cdot \overrightarrow{B D}}{|\overrightarrow{B P}||\overrightarrow{B D}|}=\dfrac{9}{5 \sqrt{10}}\),
\(∴\)点\(P\)到\(BD\)的距离为 \(d=|\overrightarrow{B P}| \sqrt{1-\cos ^{2}<\overrightarrow{B P}, \overrightarrow{B D}>}=\sqrt{10} \cdot \sqrt{1-\dfrac{81}{250}}=\dfrac{13}{5}\).
 

巩固练习

1已知空间直角坐标系中的点\(P(1,1,1)\),\(A(1,0,1)\),\(B(0,1,0)\),则点\(P\)到直线\(AB\)的距离为\(\underline{\quad \quad}\) .
 

2 在棱长为\(1\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,求点\(B_1\)到直线\(A_1 C\)的距离\(\underline{\quad \quad}\).
image.png
 

3 已知正方体\(ABCD-EFGH\)的棱长为\(1\),若\(P\)点在正方体的内部且满足 \(\overrightarrow{A P}=\dfrac{3}{4} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}+\dfrac{2}{3} \overrightarrow{A E}\),则点\(P\)到直线\(AB\)的距离为\(\underline{\quad \quad}\).
 

参考答案

  1. 答案 \(\dfrac{\sqrt{6}}{3}\)
    解析 \(\overrightarrow{A P}=(0,1,0)\), \(\overrightarrow{A B}=(-1,1,-1)\),
    则点\(P\)到直线\(AB\)的距离 \(d=|\overrightarrow{A P}| \sqrt{1-[\cos \langle\overrightarrow{A P}, \overrightarrow{A B}\rangle]^{2}}=1 \times \sqrt{1-\left(\dfrac{1}{\sqrt{3}}\right)^{2}}=\dfrac{\sqrt{6}}{3}\).

  2. 答案 \(\dfrac{\sqrt{6}}{3}\)
    解析 以\(D\)为原点,\(DA\)为\(x\)轴,\(DC\)为\(y\)轴,\(DD_1\)为\(z\)轴,建立空间直角坐标系,
    则\(B_1 (1,1,1)\),\(A_1 (1,0,1)\),\(C(0,1,0)\),
    \(\therefore \overrightarrow{A_{1} C}=(-1,1,-1)\), \(\overrightarrow{A_{1} B_{1}}=(0,1,0)\),
    \(\therefore \cos <\overrightarrow{A_{1} C}, \overrightarrow{A_{1} B_{1}}>=\dfrac{\overrightarrow{A_{1} C} \cdot \overrightarrow{A_{1} B_{1}}}{\left|\overrightarrow{A_{1} C}\right| \cdot\left|\overrightarrow{A_{1} B_{1}}\right|}=\dfrac{1}{\sqrt{3} \cdot 1}=\dfrac{\sqrt{3}}{3}\),
    \(\therefore \sin <\overrightarrow{A_{1} C}, \overrightarrow{A_{1} B_{1}}>=\dfrac{\sqrt{6}}{3}\),
    则点\(B_1\)到直线\(A_1 C\)的距离 \(\left.d=\left|\overrightarrow{A_{1} B_{1}}\right| \sin <\overrightarrow{A_{1} C}, \overrightarrow{A_{1} B_{1}}\right\rangle=\dfrac{\sqrt{6}}{3}\).

  3. 答案 \(\dfrac{5}{6}\)
    解析 分别以\(AB\),\(AD\),\(AE\)为\(x\)轴,\(y\)轴,\(z\)轴作出空间直角坐标系,
    image.png
    \(∵\)正方体\(ABCD-EFGH\)的棱长为\(1\), \(\therefore \overrightarrow{A B}=(1,0,0)\),
    \(\because \overrightarrow{A P}=\dfrac{3}{4} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}+\dfrac{2}{3} \overrightarrow{A E}\),
    \(\therefore \overrightarrow{A P}=\left(\dfrac{3}{4}, \dfrac{1}{2}, \dfrac{2}{3}\right)\),
    可得 \(\mid \overrightarrow{|A P|}=\sqrt{\left(\dfrac{3}{4}\right)^{2}+\left(\dfrac{1}{2}\right)^{2}+\left(\dfrac{2}{3}\right)^{2}}=\dfrac{\sqrt{181}}{12}\),
    \(\because \overrightarrow{A B} \cdot \overrightarrow{A P}=1 \times \dfrac{3}{4}+0 \times \dfrac{1}{2}+0 \times \dfrac{2}{3}=\dfrac{3}{4}\),
    \(\overrightarrow{A B} \cdot \overrightarrow{A P}=\overrightarrow{|A B|} \cdot \overrightarrow{|A P|} \cos \angle P A B\),
    \(\therefore \sin \angle P A B=\sqrt{1-\cos ^{2} \angle P A B}=\dfrac{10}{\sqrt{181}}\),
    \(∴\)点\(P\)到直线\(AB\)的距离为 \(\overrightarrow{|A P|} \sin \angle P A B=\dfrac{\sqrt{181}}{12} \cdot \dfrac{10}{\sqrt{181}}=\dfrac{5}{6}\).

【题型3】点到面的距离

【典题1】在正三棱柱\(ABC-A_1 B_1 C_1\)中,若\(AB=AA_1=4\),点\(D\)是\(AA_1\)的中点,求点\(A_1\)到平面\(DBC_1\)的距离.
解析 以\(A\)为原点,在平面\(ABC\)中过\(A\)作\(AC\)的垂线为\(x\)轴,\(AC\)为\(y\)轴,\(AA_1\)为\(z\)轴,建立空间直角坐标系,
image.png
\(A_1 (0,0,4)\),\(D(0,0,2)\), \(B(2 \sqrt{3}, 2,0)\),\(C_1 (0,4,4)\),
\(\overrightarrow{D A}_{1}=(0,0,2)\), \(\overrightarrow{D B}=(2 \sqrt{3}, 2,-2)\), \(\overrightarrow{D C}_{1}=(0,4,2)\),
设平面\(DBC_1\)的法向量 \(\vec{n}=(x, y, z)\),
则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{D B}=2 \sqrt{3} x+2 y-2 z=0 \\ \vec{n} \cdot \overrightarrow{D C_{1}}=4 y+2 z=0 \end{array}\right.\),取\(x= \sqrt{3}\),得\(\vec{n}=( \sqrt{3},-1,2)\),
\(∴\)点\(A_1\)到平面\(DBC_1\)的距离 \(d=\dfrac{\left|\overrightarrow{D A_{1}} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{4}{\sqrt{8}}=\sqrt{2}\).
image.png
 

【典题2】已知\(E\),\(F\)分别是正方形\(ABCD\)边\(AD\),\(AB\)的中点,\(EF\)交\(AC\)于\(P\),\(GC\)垂直于\(ABCD\)所在平面.
(1)求证:\(EF⊥\)平面\(GPC\).
(2)若\(AB=4\),\(GC=2\),求点\(B\)到平面\(EFG\)的距离.
image.png
解析 (1)连接\(BD\)交\(AC\)于\(O\),
image.png
\(∵E,F\)是正方形\(ABCD\)边\(AD\),\(AB\)的中点,\(AC⊥BD\),
\(∴EF⊥AC\).
\(∵GC\)垂直于\(ABCD\)所在平面,\(EF⊂\)平面\(ABCD\),
\(∴EF⊥GC\)
\(∵AC∩GC=C\), \(∴EF⊥\)平面\(GPC\).
(2) 方法一 间接法
由题意可知 \(P C=\dfrac{3}{4} A C=3 \sqrt{2}\), \(P G=\sqrt{P C^{2}+G C^{2}}=\sqrt{22}\),
\(∵PC=3OP\),
\(∴C\)到面\(GEF\)的距离是\(O\)到面\(GEF\)距离的3倍,
在\(∆GPC\)中,点\(C\)到边\(PG\)的高为\(CM\),
又\(∵EF⊥\)平面\(GPC\),\(∴CM⊥\)平面\(EFG\),
\(∴CM\)为\(C\)到面\(GEF\)距离,
在\(∆GPC\)中,可得 \(P G \cdot C M=G C \cdot P C \Rightarrow C M=\dfrac{2 \times 3 \sqrt{2}}{\sqrt{22}}=\dfrac{6}{\sqrt{11}}\),
又\(BD∥EF\),可得\(BD∥\)平面\(GEF\),
可得\(B\)到面\(GEF\)的距离等于\(O\)到面\(GEF\)的距离: \(\dfrac{1}{3} C M=\dfrac{2}{\sqrt{11}}=\dfrac{2 \sqrt{11}}{11}\).
故答案为: \(\dfrac{2 \sqrt{11}}{11}\).
方法二 向量法
image.png
建立空间直角坐标系\(C-xyz\),则\(G(0,0,2)\),\(E(4,2,0)\),\(F(2,4,0)\),\(B(4,0,0)\)
\(∴\)向量 \(\overrightarrow{G E}=(4,2,-2)\),向量 \(\overrightarrow{E F}=(-2,2,0)\)
设面\(GEF\)的法向量\(\vec{n}=(x,y,z)\)
则 \(\overrightarrow{G E} \cdot \vec{n}=0\)且 \(\overrightarrow{E F} \cdot \vec{n}=0\)
即\(4x+2y-2z=0\)且\(-2x+2y=0\)
取\(x=1\)时,向量\(\vec{n}=(1,1,3)\)
又\(∵\)向量 \(\overrightarrow{B E}=(0,2,0)\)
则\(B\)到面\(GEF\)的距离 \(d==\dfrac{|\vec{n} \cdot \overrightarrow{B E}|}{|\vec{n}|}=\dfrac{2 \sqrt{11}}{11}\).
方法三 等积法
同方法一可得 \(P G=\sqrt{22}\), \(\therefore S_{\Delta E F G}=\dfrac{1}{2} \times P G \times E F=2 \sqrt{11}\),
易得 \(S_{\triangle E F B}=\dfrac{1}{2} \times A F \times E B=2\)
\(\because V_{B-E F G}=V_{G-E F B}\),
\(\therefore \dfrac{1}{3} \times h \times S_{\triangle E F G}=\dfrac{1}{3} \times G C \times S_{\triangle E F B}\)
\(\therefore h=\dfrac{G C \times S_{\triangle E F B}}{S_{\triangle E F G}}=\dfrac{2 \times 2}{2 \sqrt{11}}=\dfrac{2 \sqrt{11}}{11}\).
 

巩固练习

1 在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=AD=2\),\(AA_1=1\),则点\(B\)到平面\(D_1 AC\)的距离等于(  )
 A.\(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad\) B.\(\dfrac{\sqrt{6}}{3}\) \(\qquad \qquad\) C.\(1\) \(\qquad \qquad\) D.\(\sqrt{2}\)
 

2 如图,在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AD=AA_1=1\),\(AB=2\),点\(E\)在棱\(AB\)上移动.
 (1)证明:\(D_1 E⊥A_1 D\);
 (2)当\(E\)为\(AB\)的中点时,求点\(E\)到面\(ACD_1\)的距离;
image.png
 
 

3 如图所示,四棱锥\(S-ABCD\)中,\(SA⊥\)底面\(ABCD\);\(∠ABC=90^°\),\(∠ACD=60^°\),\(AC=AD\),\(SA=2\), \(A B=\sqrt{3}\),\(BC=1\).
 (1)求证:\(BC∥\)平面\(SAD\);(2)求顶点\(A\)到平面\(SCD\)的距离.
image.png
 
 

4 如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)为\(BB_1\)的中点.
(1)证明:\(BC_1∥\)平面\(AD_1E\);(2)求直线\(BC_1\)到平面\(AD_1 E\)的距离.
image.png
 
 

参考答案

  1. 答案 \(B\)
    解析 以\(D\)为原点,\(DA\)为\(x\)轴,\(DC\)为\(y\)轴,\(DD_1\)为\(z\)轴,建立空间直角坐标系,
    \(B(2,2,0)\),\(A(2,0,0)\),\(C(0,2,0)\),\(D_1 (0,0,1)\),
    \(\overrightarrow{A B}=(0,2,0)\), \(\overrightarrow{A C}=(-2,2,0)\), \(\overrightarrow{A D}_{1}=(-2,0,1)\),
    设平面\(D_1 AC\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A C}=-2 x+2 y=0 \\ \vec{n} \cdot A D_{1}=-2 x+z=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,1,2)\),
    \(∴\)点\(B\)到平面\(D_1 AC\)的距离: \(d=\dfrac{|\overrightarrow{A B} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{2}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}\).
    故选:\(B\).
    image.png

  2. 答案 (1)略 (2) \(\dfrac{1}{3}\)
    解析 以\(D\)为坐标原点,直线\(DA\),\(DC\),\(DD_1\)分别为\(x\),\(y\),\(z\)轴,建立空间直角坐标系,
    设\(AE=x\),则\(A_1 (1,0,1)\),\(D_1 (0,0,1)\),\(E(1,x,0)\),\(A(1,0,0)\),\(C(0,2,0)\)
    (1)因为 \(\overrightarrow{D A_{1}} \cdot \overrightarrow{D_{1} E}=(1,0,1) \cdot(1, x,-1)=0\),
    所以 \(\overrightarrow{D A_{1}} \perp \overrightarrow{D_{1} E}\).
    (2)因为\(E\)为\(AB\)的中点,则\(E(1,1,0)\),
    从而 \(\overrightarrow{D_{1} E}=(1,1,-1)\), \(\overrightarrow{A C}=(-1,2,0)\), \(\overrightarrow{A D}_{1}=(-1,0,1)\),
    设平面\(ACD_1\)的法向量为\(\vec{n}=(a,b,c)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A C}=0 \\ \vec{n} \cdot \overrightarrow{A D_{1}}=0 \end{array}\right.\),也即 \(\left\{\begin{array}{l} -a+2 b=0 \\ -a+c=0 \end{array}\right.\),得 \(\left\{\begin{array}{l} a=2 b \\ a=c \end{array}\right.\),从而\(\vec{n}=(2,1,2)\),
    所以点\(E\)到平面\(AD_1 C\)的距离为 \(h=\dfrac{\left|\overrightarrow{D_{1} E} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{2+1-2}{3}=\dfrac{1}{3}\).
    image.png

  3. 答案 (1)略 (2) \(\dfrac{2 \sqrt{21}}{7}\)
    解析 (1)证明:\(∵∠ABC=90^∘\),\(∠ACD=60^∘\),\(AC=AD\),\(SA=2\), \(A B=\sqrt{3}\),\(BC=1\).
    \(∴△ADC\)是等边三角形, \(A C=\sqrt{A B^{2}+B C^{2}}=\sqrt{3+1}=2\),
    \(∴∠DAC=∠ACB=60^∘\),\(∴BC∥AD\),
    \(∵BC⊄\)平面\(SAD\),\(AD⊂\)平面\(SAD\),
    \(∴BC∥\)平面\(SAD\).
    (2)解:\(∵\)四棱锥\(S-ABCD\)中,\(SA⊥\)底面\(ABCD\),\(∠ABC=90^∘\),\(BC∥AD\),
    \(∴AD⊥AB\),
    以\(A\)为原点,\(AB\)为\(x\)轴,\(AD\)为\(y\)轴,\(AS\)为\(z\)轴,建立空间直角坐标系,
    \(A(0,0,0)\),\(S(0,0,2)\), \(C(\sqrt{3}, 1,0)\),\(D(0,2,0)\),
    \(\overrightarrow{S A}=(0,0,-2)\), \(\overrightarrow{S C}=(\sqrt{3}, 1,-2)\), \(\overrightarrow{S D}=(0,2,-2)\),
    设平面\(SCD\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{S C}=\sqrt{3} x+y-2 z=0 \\ \vec{n} \cdot \overrightarrow{S D}=2 y-2 z=0 \end{array}\right.\),取\(z=1\),得 \(\vec{n}=\left(\dfrac{\sqrt{3}}{3}, 1,1\right)\),
    \(∴\)顶点\(A\)到平面\(SCD\)的距离为 \(d=\dfrac{|\vec{n} \cdot \overrightarrow{S A}|}{|\vec{n}|}=\dfrac{2}{\sqrt{\dfrac{7}{3}}}=\dfrac{2 \sqrt{21}}{7}\).
    image.png

  4. 答案 (1)略 (2) \(\dfrac{2}{3}\)
    解析 证明:(1)\(∵D_1 C_1∥AB\),\(D_1 C_1=AB\),
    \(∴\)四边形\(D_1 ABC_1\)为平行四边形,
    \(∴D_1 A∥C_1 B\),
    \(∵D_1 A⊂\)面\(AD_1 E\),\(C_1 B⊄\)面\(AD_1 E\),
    \(∴BC_1∥\)平面\(AD_1 E\).
    解:(2)如图建立空间直角坐标系\(A-xyz\),设正方体的棱长为\(2\),
    则\(A(0,0,0)\),\(B(0,2,0)\),\(D_1 (2,0,2)\),\(C_1 (2,2,2)\),\(E(0,2,1)\),
    \(∵BC_1∥\)平面\(AD_1 E\),
    \(∴\)直线\(BC_1\)到平面\(AD_1 E\)的距离即为点\(B\)到平面\(AD_1 E\)的距离,
    \(\overrightarrow{A B}=(0,2,0)\), \(\overrightarrow{A D}_{1}=(2,0,2)\), \(\overrightarrow{A E}=(0,2,1)\),
    设平面\(AD_1 E\)的一个法向量为\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A D_{1}}=2 x+2 z=0 \\ \vec{n} \cdot \overrightarrow{A E}=2 y+z=0 \end{array}\right.\),取\(z=-1\),得 \(\vec{n}=\left(1, \dfrac{1}{2},-1\right)\),
    \(\therefore d=\dfrac{|\overrightarrow{A B} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{\left|(0,2,0) \cdot\left(1, \dfrac{1}{2},-1\right)\right|}{\sqrt{1+1+\dfrac{1}{4}}}=\dfrac{1}{\dfrac{3}{2}}=\dfrac{2}{3}\),
    \(∴\)直线\(BC_1\)到平面\(AD_1 E\)的距离为 \(\dfrac{2}{3}\);
    image.png
     

分层练习

【A组---基础题】

1 已知\(M\)为\(z\)轴上一点,且点\(M\)到点\(A(-1,0,1)\)与点\((1,-3,2)\)的距离相等,则点\(M\)的坐标为(  )
  A.\((3,0,0)\) \(\qquad \qquad\) B.\((0,-2,0)\) \(\qquad \qquad\) C.\((0,0,6)\) \(\qquad \qquad\) D.\((0,0,-3)\)
 

2 已知\(A(0,0,2)\),\(B(1,0,2)\),\(C(0,2,0)\),则点\(A\)到直线\(BC\)的距离为(  )
  A. \(\dfrac{2 \sqrt{2}}{3}\) \(\qquad \qquad\) B.\(1\) \(\qquad \qquad\) C. \(\sqrt{2}\) \(\qquad \qquad\) D. \(2 \sqrt{2}\)
 

3 已知平面\(α\)的法向量为 \(\vec{n}=(-2,-2,1)\),点\(A(x,3,0)\)在平面\(α\)内,则点\(P(-2,1,4)\)到平面\(α\)的距离为 \(\dfrac{10}{3}\),则\(x=\)(  )
  A.\(-1\)\(\qquad \qquad\) B.\(-11\) \(\qquad \qquad\) C.\(-1\)或\(-11\)\(\qquad \qquad\) D.\(-21\)
 

4 在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(AB=AC=AA_1=2\),\(∠BAC=90^∘\),\(M\)为\(BB_1\)的中点,\(N\)为\(BC\)的中点.
 (1)求点\(M\)到直线\(AC_1\)的距离;(2)求点\(N\)到平面\(MA_1 C_1\)的距离.
image.png
 

5 如图,在四棱锥\(P-ABCD\)中,底面\(ABCD\)为矩形,侧棱\(PA⊥\)底面\(ABCD\),\(AB=\sqrt{3}\),\(BC=1\),\(PA=2\),\(E\)为\(PD\)的中点.
 (1)求点\(C\)到平面\(PBD\)的距离;
 (2)在侧面\(PAB\)内找一点\(N\),使\(NE⊥\)面\(PAC\),并求出\(N\)点到\(AB\)和\(AP\)的距离.
image.png
 
 

6 如图,已知斜三棱柱\(ABC-A_1 B_1 C_1\),\(∠BCA=90°\),\(AC=BC=2\),\(A_1\)在底面\(ABC\)上的射影恰为\(AC\)的中点\(D\),又知\(BA_1⊥AC_1\).
 (1)求证:\(AC_1⊥\)平面\(A_1 BC\); (2)求\(CC_1\)到平面\(A_1 AB\)的距离.
image.png
 
 

参考答案

  1. 答案 \(C\)
    解析 \(∵M\)为\(z\)轴上一点,\(∴\)设\(M(0,0,t)\),
    \(∵\)点\(M\)到点\(A(-1,0,1)\)与点\((1,-3,2)\)的距离相等,
    \(\therefore \sqrt{(0+1)^{2}+(0-0)^{2}+(t-1)^{2}}\)\(=\sqrt{(0-1)^{2}+(0+3)^{2}+(t-2)^{2}}\),
    解得\(t=6\),
    \(∴\)点\(M\)的坐标为\(M(0,0,6)\).
    故选:\(C\).

  2. 答案 \(A\)
    解析 \(∵A(0,0,2)\),\(B(1,0,2)\),\(C(0,2,0)\), \(\overrightarrow{A B}=(1,0,0)\), \(\overrightarrow{B C}=(-1,2,-2)\),
    \(∴\)点\(A\)到直线\(BC\)的距离为: \(d=|\overrightarrow{A B}| \sqrt{1-(\cos \langle\overrightarrow{A B}, \overrightarrow{B C}\rangle)^{2}}=1 \times \sqrt{1-\left(\dfrac{-1}{1 \times 3}\right)^{2}}=\dfrac{2 \sqrt{2}}{3}\).
    故选:\(A\).

  3. 答案 \(C\)
    解析 \(\overrightarrow{A P}=(-2-x,-2,4)\), \(|\overrightarrow{A P}|=\sqrt{(-2-x)^{2}+(-2)^{2}+4^{2}}=\sqrt{x^{2}+4 x+24}\),
    \(|\vec{n}|=\sqrt{4+4+1}=3\), \(\overrightarrow{A P} \cdot \vec{n}=-2(-2-x)+4+4=2 x+12\),
    \(\therefore \cos <\overrightarrow{A P}, \vec{n}>=\dfrac{\overrightarrow{A P} \cdot \vec{n}}{|\overrightarrow{A P}||\vec{n}|}=\dfrac{2 x+12}{\sqrt{x^{2}+4 x+24} \times 3}\),
    设\(AP\)与平面\(α\)所成角为\(θ\),则 \(\sin \theta=\dfrac{|2 x+12|}{3 \sqrt{x^{2}+4 x+24}}\),
    \(∴P\)到平面\(α\)的距离为 \(|A P| \cdot \sin \theta=\dfrac{|2 x+12|}{3}=\dfrac{10}{3}\),解得\(x=-1\)或\(x=-11\).
    故选:\(C\).

  4. 答案 (1) \(\dfrac{3 \sqrt{2}}{2}\)(2) \(\dfrac{3 \sqrt{5}}{5}\)
    解析 连接\(AM\),建立如图的空间直角坐标系,
    image.png
    则\(A(0,0,0)\),\(A_1 (0,0,2)\),\(M(2,0,1)\),\(C_1 (0,2,2)\),
    直线\(AC_1\)的一个单位方向向量为 \(\overrightarrow{\boldsymbol{s}_{0}}=\left(0, \dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}\right)\), \(\overrightarrow{A M}=(2,0,1)\),
    故点\(M\)到直线\(AC_1\)的距离 \(d=\sqrt{|\overrightarrow{\mathrm{AM}}|^{2}-\left|\overrightarrow{\mathrm{AM}} \cdot s_{0}\right|^{2}}=\sqrt{5-\dfrac{1}{2}}=\dfrac{3 \sqrt{2}}{2}\);
    连接\(MN\),设平面\(MA_1 C_1\)的法向量为\(\vec{n}=(x,y,z)\),
    则 \(\vec{n} \cdot \overrightarrow{A_{1} C_{1}}=0\),且 \(\vec{n} \cdot \overrightarrow{A_{1} M}=0\),
    即\((x,y,z)⋅(0,2,0)=0\)且\((x,y,z)⋅(2,0,-1)=0\) ,
    即\(y=0\)且\(2x-z=0\),取\(x=1\),得\(z=2\),故\(\vec{n}=(1,0,2)\),
    与 \(\vec{n}\)同向的单位向量为 \(n_{0}=\left(\dfrac{\sqrt{5}}{5}, 0, \dfrac{2 \sqrt{5}}{5}\right)\),
    因为\(N(1,1,0)\),所以 \(\overrightarrow{M N}=(-1,1,-1)\),
    故求点\(N\)到平面\(MA_1 C_1\)的距离 \(d=\left|\overrightarrow{M N} \cdot n_{0}\right|=\dfrac{3 \sqrt{5}}{5}\).

  5. 答案 (1)( \(\dfrac{2 \sqrt{57}}{19}\)
    (2)\(N\)点的坐标为 \(\left(\dfrac{\sqrt{3}}{6}, 0,1\right)\),从而\(N\)点到\(AB,AP\)的距离分别为\(1\), \(\dfrac{\sqrt{3}}{6}\)
    解析 (1)建立如图所示的空间直角坐标系,则\(A(0,0,0)\)、\(B(\sqrt{3},0,0)\)、\(C(\sqrt{3},1,0)\)、\(D(0,1,0)\)、\(P(0,0,2)\)、 \(E\left(0, \dfrac{1}{2}, 1\right)\),
    从而 \(\overrightarrow{P D}=(0,1,-2)\), \(\overrightarrow{P B}=(\sqrt{3}, 0,-2)\), \(\overrightarrow{P C}=(\sqrt{3}, 1,-2)\)
    设平面\(PBD\)的一个法向量为\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{P D}=0 \\ \vec{n} \cdot \overrightarrow{P B}=0 \end{array}\right.\),即 \(\left\{\begin{array}{l} y-2 z=0 \\ \sqrt{3} x-2 z=0 \end{array}\right.\),令\(z=1\),得 \(\vec{n}=\left(\dfrac{2}{\sqrt{3}}, 2,1\right)\),
    所以点\(C\)到平面\(PBD\)的距离 \(d=\dfrac{|\overrightarrow{P C} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{2 \sqrt{57}}{19}\).
    (2)由于\(N\)点在侧面\(PAB\)内,故可设\(N\)点坐标为\((x,0,z)\),则 \(\overrightarrow{N E}=\left(-x, \dfrac{1}{2}, 1-z\right)\),
    由\(NE⊥\)面\(PAC\)可得, \(\left\{\begin{array}{l} \overrightarrow{N E} \cdot \overrightarrow{A P}=0 \\ \overrightarrow{N E} \cdot \overrightarrow{A C}=0 \end{array}\right.\),即 \(\left\{\begin{array}{l} z-1=0 \\ -\sqrt{3} x+\dfrac{1}{2}=0 \end{array}\right.\)
    \(\therefore x=\dfrac{\sqrt{3}}{6}\),\(z=1\).
    即\(N\)点的坐标为 \(\left(\dfrac{\sqrt{3}}{6}, 0,1\right)\),从而\(N\)点到\(AB,AP\)的距离分别为\(1\), \(\dfrac{\sqrt{3}}{6}\).
    image.png

  6. 答案 (1) 略 (2) \(\dfrac{2 \sqrt{21}}{7}\)
    解析 (1)\(∵A_1\)在底面\(ABC\)上的射影为\(AC\)的中点\(D\),
    \(∴\)平面\(A_1 ACC_1⊥\)平面\(ABC\),
    \(∵BC⊥AC\)且平面\(A_1 ACC_1∩\)平面\(ABC=AC\),
    \(∴BC⊥\)平面\(A_1 ACC_1\),
    \(∴BC⊥AC_1\),
    \(∵AC_1⊥BA_1\)且\(BC∩BA_1=B\),
    \(∴AC_1⊥\)平面\(A_1 BC\).
    (2)如图所示,以\(C\)为坐标原点建立空间直角坐标系,
    image.png
    \(∵AC_1⊥\)平面\(A_1 BC\),\(∴AC_1⊥A_1 C\),
    \(∴\)四边形\(A_1 ACC_1\)是菱形,
    \(∵D\)是\(AC\)的中点,\(A_1 D⊥AC\)
    \(∴∠A_1 AD=60°\),
    \(∴A(2,0,0)\), \(A_{1}(1,0, \sqrt{3})\),\(B(0,2,0)\), \(C_{1}(-1,0, \sqrt{3})\),
    \(\therefore \overrightarrow{A_{1} A}=(1,0,-\sqrt{3})\), \(\overrightarrow{A B}=(-2,2,0)\),
    设平面\(A_1 AB\)的法向量\(\vec{n}=(x,y,z)\),则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A_{1}} A=0 \\ \vec{n} \cdot \overrightarrow{A B}=0 \end{array}\right.\),
    \(\therefore\left\{\begin{array}{l} x-\sqrt{3} z=0 \\ -2 x+2 y=0 \end{array}\right.\),取 \(\vec{n}=(\sqrt{3}, \quad \sqrt{3}, 1)\),
    \(\because \overrightarrow{C_{1} A_{1}}=(2,0,0)\),
    \(∴C_1\)到平面\(A_1 AB\)的距离 \(d=\dfrac{\left|\overrightarrow{C_{1} A_{1}} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{2 \sqrt{21}}{7}\).
    \(∵CC_1//AA_1\),\(AA_1⊂\)平面\(A_1 AB\),\(CC_1⊄\)平面\(A_1 AB\)
    \(∴CC_1//\)平面\(A_1 AB\),
    \(∴CC_1\)到平面\(A_1 AB\)的距离等于\(C_1\)到平面\(A_1 AB\)的距离 \(\dfrac{2 \sqrt{21}}{7}\).

【B组---提高题】

1已知三棱锥\(S-ABC\),满足\(SA\),\(SB\),\(SC\)两两垂直,且\(SA=SB=SC=2\),\(Q\)是三棱锥\(S-ABC\)外接球上一动点,则点\(Q\)到平面\(ABC\)的距离的最大值为\(\underline{\quad \quad}\).
 

2 如图,四棱锥\(P-ABCD\)中,底面\(ABCD\)为菱形,\(∠ABC=60^°\),\(PA⊥\)平面\(ABCD\),\(AB=2\), \(P A=\dfrac{2 \sqrt{3}}{3}\),\(E\)为\(BC\)中点,\(F\)在棱\(PD\)上,\(AF⊥PD\),点\(B\)到平面\(AEF\)的距离为\(\underline{\quad \quad}\).
image.png
 

3 如图,三棱锥\(A-BCD\)中,\(E\),\(F\)分别是棱\(BC\),\(CD\)上的点,且\(EF∥\)平面\(ABD\).
 (1)求证:\(BD∥\)平面\(AEF\);
 (2)若\(AE⊥\)平面\(BCD\),\(DE⊥BC\),\(BE=DE=2AE=4\),\(P\)为线段\(DE\)的中点,求\(P\)到直线\(AB\)的距离.
image.png
 

参考答案

  1. 答案 \(\dfrac{4 \sqrt{3}}{3}\)
    解析 \(∵\)锥\(S-ABC\),满足\(SA\),\(SB\),\(SC\)两两垂直,且\(SA=SB=SC=2\),
    \(∴\)如图,\(SA\),\(SB\),\(SC\)是棱长为\(2\)的正方体\(MNPB-ADCS\)上具有公共顶点\(S\)的三条棱,
    以\(B\)为原点,\(BM\)、\(BP\)、\(BS\)分别为\(x\)轴,\(y\)轴,\(z\)轴,建立空间直角坐标系,
    image.png
    则\(B(0,0,0)\),\(A(2,0,2)\),\(C(0,2,2)\),\(S(0,0,2)\),\(N(2,2,0)\),
    \(\overrightarrow{B A}=(2,0,2)\), \(\overrightarrow{B C}=(0,2,2)\), \(\overrightarrow{B N}=(2,2,0)\),
    设平面\(ABC\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{B A}=2 x+2 z=0 \\ \vec{n} \cdot \overrightarrow{B C}=2 y+2 z=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,1,-2)\),
    三棱锥\(S-ABC\)外接球就是棱长为\(2\)的正方体\(MNPB-ADCS\)的外接球,
    \(∵Q\)是三棱锥\(S-ABC\)外接球上一动点,
    \(∴\)点\(Q\)与\(N\)重合时,点\(Q\)到平面\(ABC\)的距离的最大值,
    \(∴\)点\(Q\)到平面\(ABC\)的距离的最大值为: \(d=\dfrac{|\overrightarrow{B N} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{|2+2+0|}{\sqrt{3}}=\dfrac{4 \sqrt{3}}{3}\).

  2. 答案 \(\dfrac{\sqrt{3}}{2}\)
    解析 \(∵\)四棱锥\(P-ABCD\)中,底面\(ABCD\)为菱形,\(∠ABC=60^°\),\(PA⊥\)平面\(ABCD\),
    \(∴\)以\(A\)为原点,\(AE\)为\(x\)轴,\(AD\)为\(y\)轴,\(AP\)为\(z\)轴,建立空间直角坐标系,
    image.png
    \(∵AB=2\), \(P A=\dfrac{2 \sqrt{3}}{3}\),\(E\)为\(BC\)中点,\(F\)在棱\(PD\)上,\(AF⊥PD\),
    \(∴A(0,0,0)\), \(B(\sqrt{3},-1,0)\), \(E(\sqrt{3}, 0,0)\), \(P\left(0,0, \dfrac{2 \sqrt{3}}{3}\right)\),\(D(0,2,0)\),
    设\(F(a,b,c)\), \(\overrightarrow{P F}=\lambda \overrightarrow{P D}\),
    则 \(\left(a, b, c-\dfrac{2 \sqrt{3}}{3}\right)=\left(0,2 \lambda,-\dfrac{2 \sqrt{3}}{3} \lambda\right)\),解得\(a=0\),\(b=2λ\), \(c=\dfrac{2 \sqrt{3}}{3}-\dfrac{2 \sqrt{3}}{3} \lambda\),
    \(\therefore \overrightarrow{A F}=\left(0,2 \lambda, \dfrac{2 \sqrt{3}}{3}-\dfrac{2 \sqrt{3}}{3} \lambda\right)\), \(\overrightarrow{P D}=\left(0,2,-\dfrac{2 \sqrt{3}}{3}\right)\),
    \(∵AF⊥PD\), \(\therefore \overrightarrow{A F} \cdot \overrightarrow{P D}=4 \lambda-\dfrac{4}{3}+\dfrac{4}{3} \lambda=0\),
    解得 \(\lambda=\dfrac{1}{4}\), \(\therefore \overrightarrow{A B}=(\sqrt{3},-1,0)\), \(\overrightarrow{A E}=(\sqrt{3}, 0,0)\), \(\overrightarrow{A F}=\left(0, \dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right)\),
    设平面\(AEF\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A E}=\sqrt{3} x=0 \\ \vec{n} \cdot \overrightarrow{A F}=\dfrac{1}{2} y+\dfrac{\sqrt{3}}{2} z=0 \end{array}\right.\),取 \(y=\sqrt{3}\),得 \(\vec{n}=(0, \sqrt{3},-1) \text {, }\),
    \(∴\)点\(B\)到平面\(AEF\)的距离为: \(d=\dfrac{|\vec{n} \cdot \overrightarrow{A B}|}{|\vec{n}|}=\dfrac{\sqrt{3}}{2}\).

  3. 答案 (1) 略 (2) \(\dfrac{6 \sqrt{5}}{5}\)
    解析 (1)证明:\(∵EF∥\)平面\(ABD\),\(EF⊂\)平面\(BCD\),平面\(BCD∩\)平面\(ABD=BD\),
    \(∴EF∥BD\),
    又\(BD⊄\)平面\(AEF\),\(EF⊂\)平面\(AEF\),
    \(∴BD∥\)平面\(AEF\).
    (2)因为\(AE⊥\)平面\(BCD\),\(BE⊂\)平面\(BCD\),\(DE⊂\)平面\(BCD\),
    所以有\(AE⊥BE\),\(AE⊥DE\),又有\(DE⊥BC\),
    所以可以建立以\(E\)为坐标原点,\(ED\)为\(x\)轴,\(EB\)为\(y\)轴,\(EA\)为\(z\)轴建立如下图所示的空间直角坐标系,
    image.png
    又由\(BE=DE=2AE=4\),\(P\)为线段\(DE\)的中点
    可得各点坐标为\(E(0,0,0)\),\(B(0,4,0)\),\(D(4,0,0)\),\(A(0,0,2)\),\(P(2,0,0)\),
    即 \(\overrightarrow{A P}=(2,0,-2)\), \(\overrightarrow{A B}=(0,4,-2)\)
    过\(P\)点作\(PH\)垂直于\(AB\)交\(AB\)于\(H\),
    所以\(A\)到垂足\(H\)的距离 \(d=\dfrac{|\overrightarrow{A P} \cdot \overrightarrow{A B}|}{|\overrightarrow{A B}|}=\dfrac{|2 \times 0+0 \times 4+(-2) \times(-2)|}{\sqrt{0^{2}+4^{2}+(-2)^{2}}}=\dfrac{2 \sqrt{5}}{5}\),
    所以\(P\)到直线\(AB\)的距离为 \(\sqrt{|\overrightarrow{A P}|^{2}-d^{2}}=\sqrt{8-\left(\dfrac{2 \sqrt{5}}{5}\right)^{2}}=\dfrac{6 \sqrt{5}}{5}\).
     

【C组---拓展题】

1 正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(a\),则平面\(AB_1 D_1\)与平面\(BDC_1\)的距离为\(\underline{\quad \quad}\).
image.png
 

2 如图在四棱锥\(P-ABCD\)中,侧面\(PAD⊥\)底面\(ABCD\),侧棱 \(P A=P D=\sqrt{2}\),底面\(ABCD\)为直角梯形,其中\(BC∥AD\),\(AB⊥AD\),\(AD=2AB=2BC=2\),\(O\)为\(AD\)的中点.
 (1)求证\(PO⊥\)平面\(ABCD\);
 (2)求二面角\(C-PD-A\)夹角的正弦值;
 (3)线段\(AD\)上是否存在\(Q\),使得它到平面\(PCD\)的距离为 \(\dfrac{\sqrt{3}}{2}\)?若存在,求出 \(\dfrac{A Q}{Q D}\)的值;若不存在,说明理由.
image.png
 
 

参考答案

  1. 答案 \(\dfrac{\sqrt{3}}{3} a\)
    解析 建立空间直角坐标系如图.
    image.png
    则\(A(a,0,0)\),\(B(a,a,0)\),\(D(0,0,0)\),\(C_1 (0,a,a)\),\(D_1 (0,0,a)\),\(B_1 (a,a,a)\),
    \(\therefore \overrightarrow{A B_{1}}=(0, a, a)\), \(\overrightarrow{A D_{1}}=(-a, 0, a)\), \(\overrightarrow{B C_{1}}=(-a, 0, a)\), \(\overrightarrow{D C_{1}}=(0, a, a)\)
    设\(\vec{n}=(x,y,z)\)为平面\(AB_1 D_1\)的法向量,
    则 \(\left\{\begin{array}{c} \vec{n} \cdot \overrightarrow{A B_{1}}=a(y+z)=0 \\ \vec{n} \cdot \overrightarrow{A D_{1}}=a(-x+z)=0 \end{array}\right.\) 得 \(\left\{\begin{array}{c} y=-z \\ x=z \end{array}\right.\) 令\(z=1\),则\(\vec{n}=(1,-1,1)\)
    \(\because \overrightarrow{A D_{1}} / / \overrightarrow{B C_{1}}\), \(\overrightarrow{A B_{1}} / / \overrightarrow{D C_{1}}\),
    \(∴AD_1∥BC_1\),\(AB_1∥DC_1\),\(AD_1∩AB_1=A\),\(DC_1∩BC_1=C_1\),
    \(∴\)平面\(AB_1 D_1∥\)平面\(BDC_1\).
    \(∴\)平面\(AB_1 D_1\)与平面\(BDC_1\)的距离可转化为点\(C_1\)到平面\(AB_1 D_1\)的距离\(d\).
    \(\because \overrightarrow{C_{1} B_{1}}=(a, 0,0)\),平面\(AB_1 D_1\)的法向量为\(\vec{n}=(1,-1,1)\)
    \(\therefore d=\dfrac{\left|\overrightarrow{C_{1} B_{1}} \cdot \vec{n}\right|}{|\vec{n}|}=\dfrac{\sqrt{3}}{3} a\).

  2. 答案 (1) 略 (2) \(\dfrac{\sqrt{6}}{3}\) (3) \(\dfrac{1}{3}\)
    解析 证明:(1)\(∵\)侧棱 \(P A=P D=\sqrt{2}\),\(O\)为\(AD\)的中点,
    \(∴PO⊥AD\),
    \(∵\)侧面\(PAD⊥\)底面\(ABCD\),侧面\(PAD∩\)底面\(ABCD=AD\),
    \(∴PO⊥\)平面\(ABCD\).
    解:(2)\(∵\)底面\(ABCD\)为直角梯形,其中\(BC∥AD\),\(AB⊥AD\),\(AD=2AB=2BC=2\),
    \(∴OC⊥AD\),又\(PO⊥\)平面\(ABCD\),
    \(∴\)以\(O\)为原点,\(OC\)为\(x\)轴,\(OD\)为\(y\)轴,\(OP\)为\(z\)轴,建立空间直角坐标系,
    image.png
    平面\(PAD\)的法向量\(\vec{m}=(1,0,0)\),
    \(C(1,0,0)\),\(D(0,1,0)\),\(P(0,0,1)\), \(\overrightarrow{P C}=(1,0,-1)\), \(\overrightarrow{P D}=(0,1,-1)\),
    设平面\(PCD\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{P C}=x-z=0 \\ \vec{n} \cdot \overrightarrow{P D}=y-z=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,1,1)\),
    设二面角\(C-PD-A\)夹角为\(θ\),
    则 \(\cos \theta=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{1}{\sqrt{3}}\),
    \(\therefore \sin \theta=\sqrt{1-\left(\dfrac{1}{\sqrt{3}}\right)^{2}}=\dfrac{\sqrt{6}}{3}\),
    \(∴\)二面角\(C-PD-A\)夹角的正弦值为 \(\dfrac{\sqrt{6}}{3}\).
    (3)设线段\(AD\)上存在\(Q(0,m,0)\),\(m∈[-1,1]\),使得它到平面\(PCD\)的距离为 \(\dfrac{\sqrt{3}}{2}\),
    \(\therefore \overrightarrow{P Q}=(0, m,-1)\),
    \(∴Q\)到平面\(PCD\)的距离 \(d=\dfrac{|\overrightarrow{P Q} \cdot \vec{n}|}{|\vec{n}|}=\dfrac{|m-1|}{\sqrt{3}}=\dfrac{\sqrt{3}}{2}\),
    解得 \(m=-\dfrac{1}{2}\)或 \(m=\dfrac{5}{2}\)(舍去),
    \(\therefore Q\left(0,-\dfrac{1}{2}, 0\right)\),则 \(\dfrac{A Q}{Q D}=\dfrac{\dfrac{1}{2}}{\dfrac{3}{2}}=\dfrac{1}{3}\).

标签:1.4,overrightarrow,cdot,dfrac,sqrt,距离,平面,向量,vec
来源: https://www.cnblogs.com/zhgmaths/p/16651538.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有