ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

ORB特征点

2020-07-05 17:03:53  阅读:265  来源: 互联网

标签:chrono 特征 descriptors keypoints 图像 include ORB


1.特征点

特征点是图像里一些特别的地方,如角点、边缘和区块。比较著名有SIFT、SURF、ORB等。SIFT充分考虑了图像变换过程中出现的光照、尺度、旋转等变换,但是计算量非常大。而ORB是质量和性能之间比较好的折中。
特征点包含:

  • 关键点
  • 描述子

2. ORB特性

提取ORB特性有两个步骤:FAST角点提取BRIEF描述子

1.FAST关键点:

1.在图像中选取像素p,假设它的亮度为\({I}_{p}\).
2.设置一个阀值T,比如\({I}_{p}\)的20%
3.以像素点p为中心,选取半径为3的圆上的16个像素点
4.假如选取的圆上有连续N个点的亮度大于\({I}_{p}\)+T或小于\({I}_{p}\)-T,则p可认为是特征点(N取12的话,就是FAST-12)
5.循环上面的四步,对每一个像素执行相同的操作

ORB添加了尺度和旋转的描述.

  • 尺度不变由构造图像金字塔,并在金字塔的每一层上检测焦点来实现.
  • 旋转由计算特征点附近的图像灰度质心求得.步骤为:
    1.在一个小的图像块B中,定义图像块的矩为:\({m}_{pq} = \sum_{x,y\in B}x^py^qI(x,y)\) p,q={0,1}
    2.通过矩可以找到图像快的质心: \(C=(\frac{m_{10}}{m_{00}},\frac{m_{01}}{m_{00}})\)
    3.连接图像块的几何中心O与质心C,得到一个向量\(\vec{OC}\)
    4.特征点的方向可以定义为: \(\theta=arctan(m_{01}/m_{10})\)

2.BRIEF描述子:

BRIEF是一种二进制描述子,由0和1组成,这里0和1编码了关键点附近两个随机像素比如(p和q)的大小关系:如果p比q大,取1,反之取0.如果取了128个这样的p,q.则最后得到128维由0,1组成的向量.BRIEF使用了随机选点的比较,速度非常快.

3.特征匹配:

最简单的匹配模式是暴力匹配.对两个时刻的图像取得的特征点,测量描述子的距离,然后排序,取最近的一个作为匹配点.对于浮点型的描述子,使用欧氏距离进行度量,对于二进制,使用汉明距离进行度量-两个二进制串的汉明距离,指的是其不同位数的个数.
当特征点数量很大的时候,暴力匹配的计算量会很大,使用快速近似最近邻(FLANN)更适合匹配点数极多的情况.

4.ORB特征点

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>

using namespace std;
using namespace cv;

int main(int argc, char **argv) {
  if (argc != 3) {
    cout << "usage: feature_extraction img1 img2" << endl;
    return 1;
  }
  //-- 读取图像
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
  assert(img_1.data != nullptr && img_2.data != nullptr);

  //-- 初始化
  std::vector<KeyPoint> keypoints_1, keypoints_2;
  Mat descriptors_1, descriptors_2;
  Ptr<FeatureDetector> detector = ORB::create();
  Ptr<DescriptorExtractor> descriptor = ORB::create();
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");

  //-- 第一步:检测 Oriented FAST 角点位置
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  detector->detect(img_1, keypoints_1);
  detector->detect(img_2, keypoints_2);

  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1);
  descriptor->compute(img_2, keypoints_2, descriptors_2);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;

  Mat outimg1;
  drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
  imshow("ORB features", outimg1);

  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> matches;
  t1 = chrono::steady_clock::now();
  matcher->match(descriptors_1, descriptors_2, matches);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;

  //-- 第四步:匹配点对筛选
  // 计算最小距离和最大距离
  auto min_max = minmax_element(matches.begin(), matches.end(),
                                [](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
  double min_dist = min_max.first->distance;
  double max_dist = min_max.second->distance;

  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);

  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
  std::vector<DMatch> good_matches;
  for (int i = 0; i < descriptors_1.rows; i++) {
    if (matches[i].distance <= max(2 * min_dist, 30.0)) {
      good_matches.push_back(matches[i]);
    }
  }

  //-- 第五步:绘制匹配结果
  Mat img_match;
  Mat img_goodmatch;
  drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
  drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
  imshow("all matches", img_match);
  imshow("good matches", img_goodmatch);
  waitKey(0);

  return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(orb)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
include_directories(inc)
aux_source_directory(src DIR_SRCS)
SET(SOUR_FILE ${DIR_SRCS})
find_package(OpenCV 3 REQUIRED)
find_package(G2O REQUIRED)
find_package(Sophus REQUIRED)

include_directories(
        ${OpenCV_INCLUDE_DIRS}
        ${G2O_INCLUDE_DIRS}
        ${Sophus_INCLUDE_DIRS}
        "/usr/include/eigen3/"
)


add_executable(orb ${SOUR_FILE})
target_link_libraries(orb ${OpenCV_LIBS})

标签:chrono,特征,descriptors,keypoints,图像,include,ORB
来源: https://www.cnblogs.com/penuel/p/13198646.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有