ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

16_树与二叉树

2022-07-10 11:04:37  阅读:94  来源: 互联网

标签:遍历 16 查找 二叉树 null data 节点


16_树与二叉树

树(Tree)

树的结构

树的解释

A节点就是B节点的父节点,B节点是A节点的子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫做根节点,也就是图中的节点E。我们把没有子节点的节点叫做叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

树的三个概念

关于“树”,还有三个比较相似的概念:高度(Height)深度(Depth)层(Level)

在我们的生活中,“高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。

“深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。

“层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点位于第1层。

二叉树(Binary Tree)

顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。

满二叉树

编号2的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做满二叉树。

完全二叉树

编号3的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。

为什么要把完全二叉树单独拎出来

要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树

存储二叉树方式

链式存储法

从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

顺序存储法

基于数组的顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。

刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。你可以看我举的下面这个例子。

所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

二叉树的遍历

经典的方法有三种,前序遍历、中序遍历和后序遍历。

前序遍历

是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。

前序遍历的递推公式:

preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)

中序遍历

是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。

中序遍历的递推公式:

inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)

后序遍历

是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

后序遍历的递推公式:

postOrder(r) = postOrder(r->left)->postOrder(r->right)->printr

前中后代表的是遍历中间结点的时间

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题A,就假设子问题B、C已经解决,然后再来看如何利用B、C来解决A。所以,我们可以把前、中、后序遍历的递推公式都写出来。

伪代码

void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印root节点
  preOrder(root->left);
  preOrder(root->right);
}
void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印root节点
  inOrder(root->right);
}
void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印root节点
}

二叉树遍历的时间复杂度

从前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)。

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。

二叉查找树要求:在树的任意一个节点,其左子树的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值

二叉查找树的查找操作

如果要在二叉树中查找一个节点,先取根节点,如果它等于我们要查找的数据,那就返回。如果要找的数据比根节点的值小,那就在左子树中递归查找;如果要找的数据比根节点的值大,那就在右子树中递归查找。

代码实现:

public class BinarySearchTree {
  private Node tree;
  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }
  public static class Node {
    private int data;
    private Node left;
    private Node right;
    public Node(int data) {
    this.data = data;
    }
  }
}

二叉查找树的插入操作

如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。

代码实现:

public void insert(int data) {
  if (tree == null) {
    tree = new Node(data);
    return;
  }
  Node p = tree;
  while (p != null) {
    if (data > p.data) {
      if (p.right == null) {
        p.right = new Node(data);
        return;
      }
      p = p.right;
    } else { // data < p.data
      if (p.left == null) {
        p.left = new Node(data);
        return;
      }
      p = p.left;
    }
  }
}

二叉查找树的删除操作

删除操作的三种情况

  1. 如果要删除的节点没有子节点,我们只需要将父节点中,指向要删除节点的指针置为空。比如图中删除节点55.

  2. 如果要删除节点只有一个子节点(只有左子节点或者右子节点),只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中删除节点13.

  3. 如果要删除节点有两个子节点,需要找到这个节点的右子树中最小节点,把它替换到要删除的节点上。然后再删除点这个最小节点,因为最小节点肯定没有左子节点(如果有左子节点,那就不是最小节点了),比如删除节点18.

代码实现:

public void delete(int data) {
  Node p = tree; // p指向要删除的节点,初始化指向根节点
  Node pp = null; // pp记录的是p的父节点
  while (p != null &amp;&amp; p.data != data) {
    pp = p;
    if (data &gt; p.data) p = p.right;
    else p = p.left;
  }
  if (p == null) return; // 没有找到
  // 要删除的节点有两个子节点
  if (p.left != null &amp;&amp; p.right != null) { // 查找右子树中最小节点
    Node minP = p.right;
    Node minPP = p; // minPP表示minP的父节点
    while (minP.left != null) {
      minPP = minP;
      minP = minP.left;
    }
    p.data = minP.data; // 将minP的数据替换到p中
    p = minP; // 下面就变成了删除minP了
    pp = minPP;
  }
  // 删除节点是叶子节点或者仅有一个子节点
  Node child; // p的子节点
  if (p.left != null) child = p.left;
  else if (p.right != null) child = p.right;
  else child = null;
  if (pp == null) tree = child; // 删除的是根节点
  else if (pp.left == p) pp.left = child;
  else pp.right = child;
}
 

实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

插入、删除、查找操作的时间复杂度也比较稳定,是O(logn)。怎么算,TODO。

思考

散列表的插入、删除、查找操作的时间复杂度可以做到常量级的O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?

第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在O(n)的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在O(logn)。第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比logn小,所以实际的查找速度可能不一定比O(logn)快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。

第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。

最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

标签:遍历,16,查找,二叉树,null,data,节点
来源: https://www.cnblogs.com/l12138h/p/16462740.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有