ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

拉格朗日插值

2022-06-11 14:02:45  阅读:161  来源: 互联网

标签:拉格朗 frac limits 插值 na sum ldots vdots


这篇文章存在极其严重的伪证现象,请就情况往下翻。

在平面直角坐标系中,给出$n+1$个函数在不同的坐标的点,求其解析式

即设$n+1$个点坐标分别为$:(x_0,y_0),(x_1,y_1),......,(x_n,y_n)$

有$:\sum\limits_{i=0}^ny_i\frac{\prod\limits_{j=0}^n(x-x_j)(i\ne j)}{\prod\limits_{j=0}^n(x_i-x_j)(i\ne j)}$

引理$:$

设$n+1$个点得出的解析式可表达为$L_n(x)$

$L_n(x)=a_0+a_1(x-x_0)\ldots a_n(x-x_0)(x-x_1)\ldots(x-x_{n-1})$

有$:a$有唯一解且一定有解,并且$L_n(x_j)=y_j$

可得以下方程$:$

$$ \left\{
\begin{aligned}
y_0 & = & a_0
\\
y_1 & = & a_0 & + a_1(x_1-x_0)
\\
\vdots
\\
y_n & = & a_0 & + a_1(x_1-x_0) + \ldots + a_n(x_n-x_0)(x_n-x_1)\ldots (x_n-x_{n-1})\end{aligned}
\right.
$$

我们首先证明一下一个定理$:$克拉默法则

即$:$

$$ \left\{
\begin{aligned}
a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n & = b_1
\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n & = b_2
\\
\vdots
\\
a_{n1}x_1+a_{n2}x_2+\ldots+a_{nn}x_n & = b_n
\end{aligned}
\right.
$$

令$:$

$$
D=\left |\begin{array}{cccc}
a_{11} &a_{12} & \ldots & a_{1n}
\\
a_{21} &a_{22} & \ldots &a_{2n}
\\
\vdots & \vdots & \ddots &\vdots
\\
a_{n1} & a_{n2} & \ldots &a_{nn}
\\
\end{array}\right|
$$

称$D$为方程组的系数行列式

有$:x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\ldots,x_n=\frac{D_n}{D}$

其中$D_j(j=1,2,\ldots,n)$是把西施行列式$D$中的第$j$列元素用方程组右端的常数项代替所得到的$n$阶行列式,即

$$
D_j=\left |\begin{array}{cccc}
a_{11} &a_{12} & \ldots & a_{1,j-1} & b_1 & a_{1,j+1} & \ldots & a_{1n}
\\
a_{21} &a_{22} & \ldots & a_{2,j-1} & b_2 & a_{2,j+1} & \ldots & a_{2n}
\\
\vdots & \vdots & & \vdots & \vdots &\vdots & & \vdots
\\
a_{n1} &a_{n2} & \ldots & a_{n,j-1} & b_n & a_{n,j+1} & \ldots & a_{nn}
\\
\end{array}\right|
$$

$Proof:$ 我们分2步证明

$(1):$把方程写成

$$\sum\limits_{j=1}^na_{ij}x_j=b_i(i=1,2,\ldots,n)$$

把$x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\ldots,x_n=\frac{D_n}{D}$带入式子$:$

$$\sum\limits_{j=1}^na_{ij}\frac{D_j}{D}=\frac{1}{D}\sum\limits_{j=1}^na_{ij}D_j$$

因为$:D_j=b_1A_{1j}+b_2A_{2j}+\ldots+b_nA_{nj}=\sum\limits_{s=1}^nb_sA_{sj}($其中$A_{sj}$为元素$a_{sj}$的代数余子式$)$

$$ \sum\limits_{j=1}^na_{ij}A_{sj}=\left\{
\begin{aligned}
D,s=i
\\
0,s\ne i
\end{aligned}
\right.
$$

所以

$$\frac{1}{D}\sum\limits_{j=1}^na_{ij}D_j=\frac{1}{D}\sum\limits_{j=1}^na_{ij}\sum\limits_{s=1}^nb_sA_{sj}=\frac{1}{D}\sum\limits_{j=1}^n\sum\limits_{s=1}^na_{ij}A_{sj}b_s$$

$$=\frac{1}{D}\sum\limits_{s=1}^n\sum\limits_{j=1}^na_{ij}A_{sj}b_s=\frac{1}{D}\sum\limits_{s=1}^n(\sum\limits_{j=1}^na_{ij}A_{sj})b_s$$

$$=\frac{1}{D}Db_i=b_i$$

这相当于此式确为方程组的解

$(2):$用$D$中第$j$列的代数余子式$A_{1j},A_{2j},\ldots,A_{nj}$依次乘方程组的$n$个方程,再把它们相加,得$:$

$$(\sum\limits_{k=1}^na_{k1}A_{kj})x_1+\ldots+(\sum\limits_{k=1}^na_{kj}A_{kj})x_j+(\sum\limits_{k=1}^na_{kn}A_{kj})x_n=\sum\limits_{k=1}^nb_kA_{kj}$$

于是有

$$Dx_j=D_j(j=1,2,3,\ldots,n)$$

当$D\ne 0$时,得解一定满足式子,综上所述,方程组有唯一解.

我们回到之前的式子$:$

其系数行列式

$$
D=\left |\begin{array}{cccc}
1 &0 & \ldots & 0
\\
1 &(x_1-x_0) & \ldots &0
\\
\vdots & \vdots & \ddots &\vdots
\\
1 & (x_n-x_0) & \ldots & (x_n-x_0)(x_n-x_1)\ldots(x_n-x_{n-1})
\\
\end{array}\right|
$$

$\because x_i\ne x_j(i \ne j)$

$\therefore D \ne 0$

$\therefore a $一定有解,且有唯一解。

引理得证

接下来我们可以用数学归纳法证明等式成立

当$n=2$时

即$:L_2(x)=a_0+a_1(x-x_0)$

$$ \left\{
\begin{aligned}
y_0=L_n(x_0)=a_0
\\
y_1=L_n(x_1)=a_0& + a_1(x_1-x_0)\end{aligned}
\right.
$$

$\therefore a_0=y_0,a_1=\frac{y_1-y_0}{x_1-x_0}$

即$:$

$$L_n(x)=y_0+\frac{y_1-y_0}{x_1-x_0}(x-x_0)$$
$$=y_0+y_1\frac{x-x_0}{x_1-x_0}-y_0\frac{x-x_0}{x_1-x_0}$$
$$=y_0(1-\frac{x-x_0}{x_1-x_0})+y_1\frac{x-x_0}{x_1-x_0}$$
$$=y_0\frac{x-x_1}{x_0-x_1}+y_1\frac{x-x_0}{x_1-x_0}$$

证毕

即,当$n=2$等式成立

设$n=p-1$等式成立

证$:n=p$,等式成立

$\because L_p(x)=a_0+a_1(x-x_0)\ldots a_p(x-x_0)(x-x_1)\ldots(x-x_{p-1})$

易得$:$

$$a_p=\frac{L_p(x_p)-L_p(x_{p})}{(x_p-x_0)(x_p-x_1)\ldots(x_p-x_{p-1})}$$

将本式代入原式

$$L_p(x)=L_{p-1}(x)+\frac{y_p-L_{p-1}(x_p)}{(x_p-x_0)(x_p-x_1)\ldots(x_p-x_{p-1})}(x-x_0)(x-x_1)\ldots(x-x_{p-1})$$

$$\small
=\sum\limits_{k=0}^{p-1}y_k\frac{(x-x_0)\ldots(x-x_{k-1})(x-x_{k+1})\ldots(x-x_{p-1})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p-1})}+\big[y_p-\sum\limits_{k=0}^{p-1}y_k\frac{(x_p-x_0)\ldots(x_p-x_{k-1})(x_p-x_{k+1})\ldots(x_p-x_{p-1})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p-1})}\big]\frac{(x-x_0)\ldots(x-x_{p-1})}{(x_p-x_0)\ldots(x_p-x_{p-1})}$$

$$\small
=\sum\limits_{k=0}^{p-1}y_k\frac{(x-x_0)\ldots(x-x_{k-1})(x-x_{k+1})\ldots(x-x_{p-1})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p-1})}-\sum\limits_{k=0}^{p-1}y_k\frac{(x-x_0)\ldots(x-x_{k-1})(x-x_{k+1})\ldots(x-x_{p-1})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p-1})}\cdot\frac{x-x_k}{x_p-x_k}+y_p\frac{(x-x_0)\ldots(x-x_{p-1})}{(x_p-x_0)\ldots(x_p-x_{p-1})}$$

$$
=\sum\limits_{k=0}^{p-1}y_k\frac{(x-x_0)\ldots(x-x_{k-1})(x-x_{k+1})\ldots(x-x_{p-1})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p-1})}\cdot(1-\frac{x-x_k}{x_p-x_k})+y_p\frac{(x-x_0)\ldots(x-x_{p-1})}{(x_p-x_0)\ldots(x_p-x_{p-1})}$$

$\because 1-\frac{x-x_k}{x_p-x_k}=\frac{x_p-x_k-x+x_k}{x_p-x_k}=\frac{x-x_p}{x_k-x_p}$

$$\therefore L_p(x)=\sum\limits_{k=0}^{p-1}y_k\frac{(x-x_0)\ldots(x-x_{k-1})(x-x_{k+1})\ldots(x-x_{p})}{(x_k-x_0)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_{p})}+y_p\frac{(x-x_0)\ldots(x-x_{p-1})}{(x_p-x_0)\ldots(x_p-x_{p-1})}$$

$$\therefore L_p(x)=\sum\limits_{i=0}^ny_i\frac{\prod\limits_{j=0}^n(x-x_j)(i\ne j)}{\prod\limits_{j=0}^n(x_i-x_j)(i\ne j)}$$

标签:拉格朗,frac,limits,插值,na,sum,ldots,vdots
来源: https://www.cnblogs.com/Vidoliga/p/16365777.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有