ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

方程的解

2022-05-23 12:32:02  阅读:209  来源: 互联网

标签:方程 frac 高精度 long vis maxn ans


题面描述

求不定方程

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!} \]

的正整数解\((x,y)\)的数目。

题解

小数学题+高精度

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\\\frac{x+y}{x*y}=\frac{1}{n!}\\x*y-x*n!-y*n!=0\\x*y-x*n!-y*n!+(n!)^2=(n!)^2\\(x-n!)*(y-n!)=(n!)^2 \]

方案数就是\((n!)^2\)的因子数,对\(n!\)进行质因数分解

\(n!=p_1^{k_1}*p_2^{k_2}*\dots*p_m^{k_m}\)

\((n!)^2\)的因子数就是\(\Pi(2*k_i+1)\),套个高精度就行

无高精度版本
#include<bits/stdc++.h>
using namespace std;
const long long maxn=1e6+5;
const long long inf=0x3f3f3f3f;
long long vis[maxn],prm[maxn],nm;
int main()
{
	freopen("equal.in","r",stdin);
	freopen("equal.out","w",stdout);
	memset(vis,1,sizeof(vis));
	vis[1]=0;
	for(long long i=2;i<=maxn-5;i++)
	{
		if(vis[i])
			prm[++nm]=i;
		for(long long j=1;j<=nm&&i*prm[j]<=maxn-5;j++)
		{
			vis[i*prm[j]]=0;
			if(i%prm[j]==0)
				break;
		}
	}
	long long n,p;
	cin>>n>>p;
	long long ans=1ll;
	for(long long i=1;i<=nm;i++)
	{
		if(prm[i]>n)
			break;
		long long m=n,x=0;
		while(m>0)
		{
			m/=prm[i];
			x+=m;
		}
		x=x*2+1;
		x%=p;
		ans=ans*x;
		ans=ans%p;
	}
	cout<<ans<<endl;
	return 0;
}

标签:方程,frac,高精度,long,vis,maxn,ans
来源: https://www.cnblogs.com/zxi8-may/p/16300757.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有