ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

交叉熵损失函数原理和推导

2021-09-28 12:58:29  阅读:146  来源: 互联网

标签:right frac log 推导 交叉 函数 theta partial left


目录

一 交叉熵原理

1 信息量

信息量的大小与信息发生的概率成反比。
公式如下:
I ( x ) = − l o g ( P ( x ) ) I(x)=-log (P(x)) I(x)=−log(P(x))
其中, I ( x ) I(x) I(x)为信息量, P ( x ) P(x) P(x)为某一事件发生的概率

2 信息熵(熵)

信息熵用来表示所有信息量的期望。
公式如下:
H ( X ) = − ∑ i = 1 n P ( x i ) log ⁡ ( P ( x i ) ) H(\mathrm{X})=-\sum_{i=1}^{n} P\left(x_{i}\right) \log \left(P\left(x_{i}\right)\right) H(X)=−i=1∑n​P(xi​)log(P(xi​))
其中 X X X为离散变量 ( X = x 1 , x 2 , … , x n ) (X=x 1, x 2, \ldots, x n) (X=x1,x2,…,xn)

3 相对熵(KL散度)

使用KL散度来衡量对于同一随机变量的两个单独概率分布之间的差异。
公式如下:

D K L ( p ∥ q ) = ∑ i = 1 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) D_{K L}(p \| q)=\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right) DKL​(p∥q)=i=1∑n​p(xi​)log(q(xi​)p(xi​)​)
P ( x ) P(x) P(x)表示样本的真实分布, Q ( x ) Q(x) Q(x)表示模型所预测的分布。
KL散度越小,表示 P ( x ) P(x) P(x)和 Q ( x ) Q(x) Q(x)的分布更接近,反复训练 Q ( x ) Q(x) Q(x)使其分布逼近 P ( x ) P(x) P(x)。

4 交叉熵

交叉熵=相对熵-信息熵
H ( p , q ) = [ − ∑ i = 1 n p ( x i ) log ⁡ ( q ( x i ) ) ] H(p, q)=\left[-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right)\right] H(p,q)=[−i=1∑n​p(xi​)log(q(xi​))]
注:
D K L ( p ∥ q ) = ∑ i = 1 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) = ∑ i = 1 n p ( x i ) log ⁡ ( p ( x i ) ) − ∑ i = 1 n p ( x i ) log ⁡ ( q ( x i ) ) = H ( p ( x ) ) + [ − ∑ i = 1 n p ( x i ) log ⁡ ( q ( x i ) ) ] \begin{gathered} D_{K L}(p \| q)=\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right) \\ =\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(p\left(x_{i}\right)\right)-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right) \\ =H(p(x))+\left[-\sum_{i=1}^{n} p\left(x_{i}\right) \log \left(q\left(x_{i}\right)\right)\right] \end{gathered} DKL​(p∥q)=i=1∑n​p(xi​)log(q(xi​)p(xi​)​)=i=1∑n​p(xi​)log(p(xi​))−i=1∑n​p(xi​)log(q(xi​))=H(p(x))+[−i=1∑n​p(xi​)log(q(xi​))]​
训练网络时输入数据与标签已经确定,即 P ( x ) P(x) P(x)确定,信息熵为常量。KL值越小,预测结果越好,需最小化KL散度,即用交叉熵损失函数计算。

5 小结

交叉熵源于信息论,主要用于度量两个概率分布间的差异性。
在线性回归问题中,常使用MSE作为损失函数;在分类问题中常使用交叉熵作为损失函数,在输出层使用softmax将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。

二 推导

1 Logistic交叉熵损失函数

公式
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right) J(θ)=−m1​i=1∑m​y(i)log(hθ​(x(i)))+(1−y(i))log(1−hθ​(x(i)))
导数
∂ ∂ θ j J ( θ ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial}{\partial \theta_{j}} J(\theta)=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} ∂θj​∂​J(θ)=m1​i=1∑m​(hθ​(x(i))−y(i))xj(i)​
推导
对于logistic回归,m组样本,输入样本 x ( i ) = ( 1 , x 1 ( i ) , x 2 ( i ) , … , x p ( i ) ) T x^{(i)}=\left(1, x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{p}^{(i)}\right)^{T} x(i)=(1,x1(i)​,x2(i)​,…,xp(i)​)T,为 p + 1 p+1 p+1维向量(考虑bias); y ( i ) y^{(i)} y(i)表示类别,此处取0或1;模型的参数为 θ = ( θ 0 , θ 1 , … , θ p ) T \theta=\left(\theta_{0}, \theta_{1, \ldots,} \theta_{p}\right)^{T} θ=(θ0​,θ1,…,​θp​)T
θ T x ( i ) : = θ 0 + θ 1 x 1 ( i ) + ⋯ + θ p x p ( i ) . \theta^{T} x^{(i)}:=\theta_{0}+\theta_{1} x_{1}^{(i)}+\cdots+\theta_{p} x_{p}^{(i)} . θTx(i):=θ0​+θ1​x1(i)​+⋯+θp​xp(i)​.
假设函数定义为: h θ ( x ( i ) ) = 1 1 + e − θ T x ( i ) h_{\theta}\left(x^{(i)}\right)=\frac{1}{1+e^{{-\theta ^T}x^{(i)}}} hθ​(x(i))=1+e−θTx(i)1​
P ( y ^ ( i ) = 1 ∣ x ( i ) ; θ ) = h θ ( x ( i ) ) P ( y ^ ( i ) = 0 ∣ x ( i ) ; θ ) = 1 − h θ ( x ( i ) ) log ⁡ P ( y ^ ( i ) = 1 ∣ x ( i ) ; θ ) = log ⁡ h θ ( x ( i ) ) = log ⁡ 1 1 + e − θ T x ( i ) log ⁡ P ( y ^ ( i ) = 0 ∣ x ( i ) ; θ ) = log ⁡ ( 1 − h θ ( x ( i ) ) ) = log ⁡ e − θ T x ( i ) 1 + e − θ T x ( i ) \begin{gathered} P\left(\hat{y}^{(i)}=1 \mid x^{(i)} ; \theta\right)=h_{\theta}\left(x^{(i)}\right) \\ P\left(\hat{y}^{(i)}=0 \mid x^{(i)} ; \theta\right)=1-h_{\theta}\left(x^{(i)}\right) \\ \log P\left(\hat{y}^{(i)}=1 \mid x^{(i)} ; \theta\right)=\log h_{\theta}\left(x^{(i)}\right)=\log \frac{1}{1+e^{{-\theta ^{T}} x^{(i)}}} \\ \log P\left(\hat{y}^{(i)}=0 \mid x^{(i)} ; \theta\right)=\log \left(1-h_{\theta}\left(x^{(i)}\right)\right)=\log \frac{e^{-\theta^{T} x^{(i)}}}{1+e^{-\theta^{T} x^{(i)}}} \end{gathered} P(y^​(i)=1∣x(i);θ)=hθ​(x(i))P(y^​(i)=0∣x(i);θ)=1−hθ​(x(i))logP(y^​(i)=1∣x(i);θ)=loghθ​(x(i))=log1+e−θTx(i)1​logP(y^​(i)=0∣x(i);θ)=log(1−hθ​(x(i)))=log1+e−θTx(i)e−θTx(i)​​
对于第 i i i组样本,假设函数表征正确的组合对数概率为:
I { y ( i ) = 1 } log ⁡ P ( y ^ ( i ) = 1 ∣ x ( i ) ; θ ) + I { y ( i ) = 0 } log ⁡ P ( y ^ ( i ) = 0 ∣ x ( i ) ; θ ) = y ( i ) log ⁡ P ( y ^ ( i ) = 1 ∣ x ( i ) ; θ ) + ( 1 − y ( i ) ) log ⁡ P ( y ^ ( i ) = 0 ∣ x ( i ) ; θ ) = y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) \begin{gathered} I\left\{y^{(i)}=1\right\} \log P\left(\hat{y}^{(i)}=1 \mid x^{(i)} ; \theta\right)+I\left\{y^{(i)}=0\right\} \log P\left(\hat{y}^{(i)}=0 \mid x^{(i)} ; \theta\right) \\ =y^{(i)} \log P\left(\hat{y}^{(i)}=1 \mid x^{(i)} ; \theta\right)+\left(1-y^{(i)}\right) \log P\left(\hat{y}^{(i)}=0 \mid x^{(i)} ; \theta\right) \\ =y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right) \end{gathered} I{y(i)=1}logP(y^​(i)=1∣x(i);θ)+I{y(i)=0}logP(y^​(i)=0∣x(i);θ)=y(i)logP(y^​(i)=1∣x(i);θ)+(1−y(i))logP(y^​(i)=0∣x(i);θ)=y(i)log(hθ​(x(i)))+(1−y(i))log(1−hθ​(x(i)))​
对于 m m m组样本可得损失函数:
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right) J(θ)=−m1​i=1∑m​y(i)log(hθ​(x(i)))+(1−y(i))log(1−hθ​(x(i)))
J J J取负号的原因:表征正确的概率值越大,模型对数据的表达能力越好;但在衡量模型优劣时表现误差的损失函数且越小越好。两相矛盾,所以令损失函数对表征正确的组合对数概率取反。
求导
第一步:
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) = − 1 m ∑ i = 1 m [ − y ( i ) ( log ⁡ ( 1 + e − θ T x ( i ) ) ) + ( 1 − y ( i ) ) ( − θ T x ( i ) − log ⁡ ( 1 + e − θ T x ( i ) ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) θ T x ( i ) − θ T x ( i ) − log ⁡ ( 1 + e − θ T x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) θ T x ( i ) − log ⁡ e θ T x ( i ) − log ⁡ ( 1 + e − θ T x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) θ T x ( i ) − ( log ⁡ e θ T x ( i ) + log ⁡ ( 1 + e − θ T x ( i ) ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) θ T x ( i ) − log ⁡ ( e θ T x ( i ) + 1 ) ] \begin{gathered} J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\\ =-\frac{1}{m} \sum_{i=1}^{m}\left[-y^{(i)}\left(\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\right)+\left(1-y^{(i)}\right)\left(-\theta^{T} x^{(i)}-\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\right)\right] \\ =-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \theta^{T} x^{(i)}-\theta^{T} x^{(i)}-\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\right] \\ =-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \theta^{T} x^{(i)}-\log e^{\theta^{T} x^{(i)}}-\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\right]_{} \\ =-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \theta^{T} x^{(i)}-\left(\log e^{\theta^{T} x^{(i)}}+\log \left(1+e^{-\theta^{T} x^{(i)}}\right)\right)\right]_{} \\ =-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \theta^{T} x^{(i)}-\log \left(e^{\theta^{T} x^{(i)}}+1\right)\right] \end{gathered} J(θ)=−m1​i=1∑m​y(i)log(hθ​(x(i)))+(1−y(i))log(1−hθ​(x(i)))=−m1​i=1∑m​[−y(i)(log(1+e−θTx(i)))+(1−y(i))(−θTx(i)−log(1+e−θTx(i)))]=−m1​i=1∑m​[y(i)θTx(i)−θTx(i)−log(1+e−θTx(i))]=−m1​i=1∑m​[y(i)θTx(i)−logeθTx(i)−log(1+e−θTx(i))]​=−m1​i=1∑m​[y(i)θTx(i)−(logeθTx(i)+log(1+e−θTx(i)))]​=−m1​i=1∑m​[y(i)θTx(i)−log(eθTx(i)+1)]​
第二步:
∂ ∂ θ j J ( θ ) = ∂ ∂ θ j ( 1 m ∑ i = 1 m [ log ⁡ ( 1 + e θ T x ( i ) ) − y ( i ) θ T x ( i ) ] ) = 1 m ∑ i = 1 m ( x j ( i ) e θ T x ( i ) 1 + e θ T x ( i ) − y ( i ) x j ( i ) ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \begin{gathered} \frac{\partial}{\partial \theta_{j}} J(\theta)=\frac{\partial}{\partial \theta_{j}}\left(\frac{1}{m} \sum_{i=1}^{m}\left[\log \left(1+e^{\theta^{T} x^{(i)}}\right)-y^{(i)} \theta^{T} x^{(i)}\right]\right) \\ =\frac{1}{m} \sum_{i=1}^{m}\left(\frac{x_{j}^{(i)} e^{\theta^{T} x^{(i)}}}{1+e^{\theta^{T} x^{(i)}}}-y^{(i)} x_{j}^{(i)}\right) \\ =\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} \end{gathered} ∂θj​∂​J(θ)=∂θj​∂​(m1​i=1∑m​[log(1+eθTx(i))−y(i)θTx(i)])=m1​i=1∑m​(1+eθTx(i)xj(i)​eθTx(i)​−y(i)xj(i)​)=m1​i=1∑m​(hθ​(x(i))−y(i))xj(i)​​

2 Softmax交叉熵损失函数

公式
C = − ∑ i y i ln ⁡ a i C=-\sum_{i} y_{i} \ln a_{i} C=−i∑​yi​lnai​
a i = e z i ∑ k e z k , z i = ∑ j w i j x i j + b a_{i}=\frac{e^{z _{i}}}{\sum_{k} e^{z _{k}}},z_{i}=\sum_{j} w_{i j} x_{i j}+b ai​=∑k​ezk​ezi​​,zi​=∑j​wij​xij​+b
其中, y i y_{i} yi​表示真实的分类结果, z i z_{i} zi​为神经元的输出
w i j w_{i j} wij​为第 i i i个神经元的第 j j j个权重, b b b是偏移值, z i z_{i} zi​表示该网络的第 i i i个输出, a i a_{i} ai​为给第 i i i个输出加softmax函数:
导数
∂ C ∂ z i = a i − y i \frac{\partial C}{\partial z_{i}}=a_{i}-y_{i} ∂zi​∂C​=ai​−yi​
推导
∂ C ∂ z i = ∑ j ( ∂ C j ∂ a j ∂ a j ∂ z i ) \frac{\partial C}{\partial z_{i}}=\sum_{j}\left(\frac{\partial C_{j}}{\partial a_{j}} \frac{\partial a_{j}}{\partial z_{i}}\right) ∂zi​∂C​=j∑​(∂aj​∂Cj​​∂zi​∂aj​​)
∂ C j ∂ a j = ∂ ( − y j ln ⁡ a j ) ∂ a j = − y j 1 a j \frac{\partial C_{j}}{\partial a_{j}}=\frac{\partial\left(-y_{j} \ln a_{j}\right)}{\partial a_{j}}=-y_{j} \frac{1}{a_{j}} ∂aj​∂Cj​​=∂aj​∂(−yj​lnaj​)​=−yj​aj​1​
对于 ∂ a j ∂ z i \frac{\partial a_{j}}{\partial z_{i}} ∂zi​∂aj​​有如下两种情况:
(1) i = j i=j i=j
∂ a i ∂ z i = ∂ ( e z i ∑ k e z k ) ∂ z i = ∑ k e z k e z i − ( e z i ) 2 ( ∑ k e z k ) 2 = ( e z i ∑ k e z k ) ( 1 − e z i ∑ k e z k ) = a i ( 1 − a i ) \frac{\partial a_{i}}{\partial z_{i}}=\frac{\partial\left(\frac{e^{z _{i}}}{\sum_{k} e^{z _{k}}}\right)}{\partial z_{i}}=\frac{\sum_{k} e^{z _{k}} e^{z _{i}}-\left(e^{z _{i}}\right)^{2}}{\left(\sum_{k} e^{z _{k}}\right)^{2}}\\ =\left(\frac{e^{z_{i}}}{\sum_{k} e^{z k}}\right)\left(1-\frac{e^{z_{i}}}{\sum_{k} e^{z k}}\right)=a_{i}\left(1-a_{i}\right) ∂zi​∂ai​​=∂zi​∂(∑k​ezk​ezi​​)​=(∑k​ezk​)2∑k​ezk​ezi​−(ezi​)2​=(∑k​ezkezi​​)(1−∑k​ezkezi​​)=ai​(1−ai​)
(2) i ≠ j i \neq j i​=j
∂ a j ∂ z i = ∂ ( e z j ∑ k e z k ) ∂ z i = − e z j ( 1 ∑ k e z k ) 2 e z i = − a i a j \frac{\partial a_{j}}{\partial z_{i}}=\frac{\partial\left(\frac{e^{z _{j}}}{\sum k e^{z_{k}}}\right)}{\partial z_{i}}=-e^{z_{ j}}\left(\frac{1}{\sum_{k} e^{z k}}\right)^{2} e^{z_ {i}}=-a_{i} a_{j} ∂zi​∂aj​​=∂zi​∂(∑kezk​ezj​​)​=−ezj​(∑k​ezk1​)2ezi​=−ai​aj​
综上:
∂ C ∂ z i = ∑ j ( ∂ C j ∂ a j ∂ a j ∂ z i ) = ∑ j ≠ i ( ∂ C j ∂ a j ∂ a j ∂ z i ) + ∑ i = j ( ∂ C j ∂ a j ∂ a j ∂ z i ) = ∑ j ≠ i − y j 1 a j ( − a i a j ) + ( − y i 1 a i ) ( a i ( 1 − a i ) ) = ∑ j ≠ i a i y j + ( − y i ( 1 − a i ) ) = ∑ j ≠ i a i y j + a i y i − y i = a i ∑ j y j − y i \begin{aligned} &\frac{\partial C}{\partial z_{i}}=\sum_{j}\left(\frac{\partial C_{j}}{\partial a_{j}} \frac{\partial a_{j}}{\partial z_{i}}\right)=\sum_{j \neq i}\left(\frac{\partial C_{j}}{\partial a_{j}} \frac{\partial a_{j}}{\partial z_{i}}\right)+\sum_{i=j}\left(\frac{\partial C_{j}}{\partial a_{j}} \frac{\partial a_{j}}{\partial z_{i}}\right) \\ &=\sum_{j \neq i}-y_{j} \frac{1}{a_{j}}\left(-a_{i} a_{j}\right)+\left(-y_{i} \frac{1}{a_{i}}\right)\left(a_{i}\left(1-a_{i}\right)\right) \\ &=\sum_{j \neq i} a_{i} y_{j}+\left(-y_{i}\left(1-a_{i}\right)\right) \\ &=\sum_{j \neq i} a_{i} y_{j}+a_{i} y_{i}-y_{i} \\ &=a_{i} \sum_{j} y_{j}-y_{i} \end{aligned} ​∂zi​∂C​=j∑​(∂aj​∂Cj​​∂zi​∂aj​​)=j​=i∑​(∂aj​∂Cj​​∂zi​∂aj​​)+i=j∑​(∂aj​∂Cj​​∂zi​∂aj​​)=j​=i∑​−yj​aj​1​(−ai​aj​)+(−yi​ai​1​)(ai​(1−ai​))=j​=i∑​ai​yj​+(−yi​(1−ai​))=j​=i∑​ai​yj​+ai​yi​−yi​=ai​j∑​yj​−yi​​
针对分类问题, y i yi yi最终只会有一个类别是1,其他类别都是0
所以 ∂ C ∂ z i = a i − y i \frac{\partial C}{\partial z_{i}}=a_{i}-y_{i} ∂zi​∂C​=ai​−yi​

附录 求导公式和法则

基本初等函数求导公式
(1) ( C ) ′ = 0 \quad(C)^{\prime}=0 (C)′=0
(2) ( x μ ) ′ = μ x μ − 1 \quad\left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} (xμ)′=μxμ−1
(3) ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)^{\prime}=\cos x (sinx)′=cosx
(4) ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)^{\prime}=-\sin x (cosx)′=−sinx
(5) ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)^{\prime}=\sec ^{2} x (tanx)′=sec2x
(6) ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)^{\prime}=-\csc ^{2} x (cotx)′=−csc2x
(7) ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)^{\prime}=\sec x \tan x (secx)′=secxtanx
(8) ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)^{\prime}=-\csc x \cot x (cscx)′=−cscxcotx
(9) ( a x ) ′ = a x ln ⁡ a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)′=axlna
(10) ( e x ) ′ = e x \left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x} (ex)′=ex
(11) ( log ⁡ a x ) ′ = 1 x ln ⁡ a \left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} (loga​x)′=xlna1​
(12) ( ln ⁡ x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)′=x1​,
(13) ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)′=1−x2 ​1​
(14) ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} (arccosx)′=−1−x2 ​1​
(15) ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)^{\prime}=\frac{1}{1+x^{2}} (arctanx)′=1+x21​
(16) ( arccot ⁡ x ) ′ = − 1 1 + x 2 (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} (arccotx)′=−1+x21​
求导法则
设 u = u ( x ) , v = v ( x ) u=u(x), v=v(x) u=u(x),v=v(x) 都可导, 则
(1) ( u ± v ) ′ = u ′ ± v ′ \quad(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime} (u±v)′=u′±v′
(2) ( C u ) ′ = C u ′ ( C (C u)^{\prime}=C u^{\prime}(C (Cu)′=Cu′(C 是常数)
(3) ( u v ) ′ = u ′ v + u v ′ \quad(u v)^{\prime}=u^{\prime} v+u v^{\prime} (uv)′=u′v+uv′
(4) ( u v ) ′ = u ′ v − u v ′ v 2 \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} (vu​)′=v2u′v−uv′​
复合函数求导法则
设 y = f ( u ) y=f(u) y=f(u), 而 u = φ ( x ) u=\varphi(x) u=φ(x) 且 f ( u ) f(u) f(u) 及 φ ( x ) \varphi(x) φ(x) 都可导, 则复合函数 y = f [ φ ( x ) ] y=f[\varphi(x)] y=f[φ(x)] 的导数为
d y d x = d y d u ⋅ d u d x  或  y ′ = f ′ ( u ) ⋅ φ ′ ( x ) \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \text { 或 } y^{\prime}=f^{\prime}(u) \cdot \varphi^{\prime}(x) dxdy​=dudy​⋅dxdu​ 或 y′=f′(u)⋅φ′(x)

标签:right,frac,log,推导,交叉,函数,theta,partial,left
来源: https://blog.csdn.net/weixin_50008473/article/details/120505614

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有