ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

luogu P2365 任务安排

2021-05-29 19:55:40  阅读:235  来源: 互联网

标签:sumt 安排 int luogu P2365 ch include sumc dp


嘟嘟嘟


如果常规dp,\(dp[i][j]\)表示前\(i\)个任务分\(j\)组,得到

\[dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s * j + sumt[i]) * (sumc[i] - sumc[k])) \]

复杂度是\(O(n ^ 3)\)的。
因此我们要换一个思路。
在执行一批任务时,我们虽然不知道之前机器启动过多少次,但是可以确定机器因执行这批人武而花费的启动时间为\(s\),会累加到后面的任务上。
因此,令\(dp[i]\)表示把前\(i\)个任务分成若干批的最小费用,则

\[dp[i] = min_{j = 0} ^ {i - 1} (dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j])) \]

\(sumt[i] * (sumc[i] - sumc[j])\)表示的是不考虑机器启动时前\(i\)批任务的费用。之所以可以这么写,是因为后面的\(s * (sumc[n] - sumc[j])\)已经把他们的时间算进去了,即包含在了\(dp[j]\)中。
时间复杂度\(O(n ^ 2)\)。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n, s;
int sumt[maxn], sumc[maxn];
int dp[maxn];

int main()
{
  n = read(); s = read();
  for(int i = 1, t, c; i <= n; ++i)
    {
      t = read(), sumt[i] = sumt[i - 1] + t;
      c = read(), sumc[i] = sumc[i - 1] + c;
    }
  Mem(dp, 0x3f); dp[0] = 0;
  for(int i = 1; i <= n; ++i)
    for(int j = 0; j < i; ++j)
      dp[i] = min(dp[i], dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]));
  write(dp[n]), enter;
  return 0;
}

上述算法已经能过此题,但还有一个$O(n)$的做——斜率优化。 简单来说就是对上述dp式进行变形,把常数、仅与$i$有关的项、仅与$j$有关的项以及$i, j$的乘积项分开。 具体维护下凸壳等想法不想讲了(懒),以后填坑吧 先上代码 ```c++ #include #include #include #include #include #include #include #include #include #include using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define rg register typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 1e4 + 5; inline ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } inline void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); }

int n, s;
ll sumt[maxn], sumc[maxn];
ll dp[maxn];
int q[maxn], l = 1, r = 1;

int main()
{
n = read(); s = read();
for(int i = 1, t, c; i <= n; ++i)
{
t = read(), sumt[i] = sumt[i - 1] + t;
c = read(), sumc[i] = sumc[i - 1] + c;
}
Mem(dp, 0x3f); dp[0] = 0;
for(int i = 1; i <= n; ++i)
{
while(l < r && (dp[q[l + 1]] - dp[q[l]]) <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]])) l++;
dp[i] = dp[q[l]] - (s + sumt[i]) * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
while(l < r && (dp[q[r]] - dp[q[r - 1]]) * (sumc[i] - sumc[q[r]]) >= (dp[i] - dp[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]])) r--;
q[++r] = i;
}
write(dp[n]), enter;
return 0;
}

标签:sumt,安排,int,luogu,P2365,ch,include,sumc,dp
来源: https://blog.51cto.com/u_15234622/2831196

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有