ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

超曲面体积的第一、二变分公式

2021-04-11 15:34:46  阅读:389  来源: 互联网

标签:phi frac 公式 align det 二变分 曲面 end nu



Here, we only consider the codimension one case. Let $F: M\rightarrow R^{n+1}$. Nor we have the normal variation, denote like
$\phi$ is $C^\infty(R^{n+1})$, let $F(x,t)=F(x)+t\phi\nu$. Then, we have
\begin{align*}
g_{ij}(x,t)&=\langle F_i+t\phi_i\nu+t\phi\nu_i,F_j+t\phi_j\nu+t\phi\nu_j\rangle\\
&=g_{ij}(x)+t\phi\langle F_i,\nu_j\rangle+t^2\phi_i\phi_j+t^2\phi\phi_i\langle\nu,\nu_j\rangle\\
&~~+t^2\phi\langle\nu_i,F_j\rangle+t\phi\phi_j\langle \nu_i,\nu\rangle+t^2\phi^2\langle\nu_i,\nu_j\rangle
\end{align*}

Note that
\begin{align}
V(M_t)=\int_D\sqrt{det(g(x,t))}dx,
\end{align}
it follows that
\begin{align}
\frac{dV(M_t)}{dt}=\int_D\frac{1}{2\sqrt{det(g(x,t))}}\frac{\partial det(g(x,t))}{\partial t}dx
\end{align}

By elementary algebra, we have
\begin{align}
\frac{\partial det(g)}{\partial t}=det(g)trace(g^{-1}\frac{\partial g}{\partial t})
\end{align}

Note that
\begin{align*}
\frac{\partial g(x,t)}{\partial t}&=2t(\phi\phi_i\langle\nu,\nu_j\rangle+\phi\phi_j\langle \nu_i,\nu\rangle+\phi_i\phi_j+\phi^2\langle\nu_i,\nu_j\rangle)\\
&~~+\phi\langle F_i,\nu_j\rangle+\phi\langle\nu_i,F_j\rangle
\end{align*}

For $t=0$, we have
\begin{align*}
det(g(x,t))trace(g^{-1}g')\Big|_{t=0}&=\phi g^{ij}(x)\Big(\langle F_i,\nu_j\rangle+\langle\nu_i,F_j\rangle\Big)\\
&=det(g(x))\phi g^{ij}(x)\langle F_i,\nu_j\rangle++\langle\nu_i,F_j\rangle\\
&=det(g(x))\langle F_i,-h_j^kF_k\rangle+\langle-h_i^kF_k,F_j\rangle\\
&=-\phi )g^{ij}g_{ik}h_j^k-g^{ij}h_i^kg_{kj})det(g(x))\\
&=-2\phi Hdet(g(x)).
\end{align*}
Therefore,
\begin{align}
\frac{dV(M_t)}{dt}\Big|_{t=0}=-\int_{M}\phi HdV_M
\end{align}
If $\phi$ is any smooth function on $M$ with compact support, then $\frac{dV(M_t)}{dt}|_{t=0}=0$ iff $H=0$. In this case, we call $M$ is a minimal hypersurface.

Especially, if $\phi=H$, like $\frac{\partial X}{\partial t}=H\nu$, we get
\begin{align}
\frac{dV(M_t)}{dt}\Big|_{t=0}=-\int_{M}H^2dV_M\leq 0,
\end{align}
which means that under the mean curvature flow, the area of
$M_t$ is decreasing.

If we instant on assume $M_t$ is represented by $(x,u(x,t))$, by
\begin{align}
\langle\frac{dX}{dt},\nu\rangle=H=-div_{M_t}\left(\frac{(-Du,1)}{\sqrt{1+|Du|^2}}\right),
\end{align}
we have
\begin{align}
\frac{\partial u}{\partial t}=\frac{(1+|Du|^2)\Delta u-DuD^2u(Du)^T}{1+|Du|^2}.
\end{align}
This is
\begin{align}
\frac{\partial u}{\partial t}=a_{ij}(x,t)D_{ij}u,
\end{align}
where
\begin{align}
a_{ij}(x)=\delta_ij-\frac{u_iu_j}{1+|Du|^2}=g^{ij},
\end{align}
which means that the equation is strictly elliptic and the gradient estimate may play a essential in the proof of some property.

For simplicity, if we can consider the ancient similar solution in $R^n\times(-\infty,0)$, of soliton (variable separation). If $U(x,t)=\sqrt{-t}u(\frac{x}{\sqrt{-t}})$, then we have
\begin{align}
g^{ij}(Du)D_{ij}u=\frac{1}{2}x\cdot Du-\frac{1}{2}u.
\end{align}
Lu Wang's theorem assert that $U(x,t)=Du(0)\cdot x=u(x)$.

Recall that
\begin{align}
(g^{-1}(t))'=-g^{-1}g'(t)g^{-1}.
\end{align}
We will calculate $\frac{d^2V_{M_t}}{dt^2}$.

In fact, we have
\begin{align*}
\frac{\partial ^2det(g(x,t))}{\partial t^2}\Big|_{t=0}=det(g(x,t))' tr(g^{-1}g'(t))+det(g(x,t))tr((g^{-1})'g'(t)+g^{-1}g''(t))\Big|_{t=0}.
\end{align*}

Note that
\begin{align}
\partial_t\sqrt{det(g(x,t))}=\frac{\sqrt{det(g(x,t)))}}{2}tr(g^{-1}(x,t)g'(x,t)),
\end{align}
we have
\begin{align*}
\partial^2_t\sqrt{det(g(x,t))}&=\frac{\partial_t\sqrt{det(g(x,t))}}{2}tr(g^{-1}(x,t)g'(x,t))\\
&+\frac{\sqrt{det(g(x,t))}}{2}tr((g^{-1}(x,t)))'g'(x,t)+g^{-1}(x,t)g''(x,t))\\
&=\frac{1}{4\sqrt{det(g(x,t))}}\partial_t(det(g(x,t))tr\Big(g^{-1}(x,t)g'(x,t)\Big)\\
&+\frac{\sqrt{det(g(x,t))}}{2}tr\Big((g^{-1}(x,t)))'g'(x,t)+g^{-1}(x,t)g''(x,t)\Big)
\end{align*}


Firstly, we have
\begin{align*}
\partial_t(det(g(x,t))) tr(g^{-1}g'(x,t))|_{t=0}=4\phi^2 H^2det(g),
\end{align*}
that is
\begin{align*}
\frac{1}{4\sqrt{det(g(x,t))}}\partial_t(det(g(x,t))tr\Big(g^{-1}(x,t)g'(x,t)\Big)|_{t=0}=\phi^2 H^2\sqrt{det(g)}
\end{align*}
if $H\equiv0$, this term is zero.

Secondly, we have
\begin{align*}
\frac{\sqrt{det(g(x,t))}}{2}trace(g^{-1}g''(x,t))_{t=0}
=&\sqrt{det(g)}g^{ij}(\phi_i\phi_j+\phi^2\langle\nu_i,\nu_j\rangle)\\
=&(|\nabla_M\phi|^2+\phi^2|B|^2)\sqrt{det(g)},
\end{align*}
and
\begin{align*}
\frac{\sqrt{det(g(x,t))}}{2}tr((g^{-1})'g'(t))|_{t=0}&=-\sqrt{det(g)}tr(g^{-1}g'(x,0)g^-1g'(x,0))\\
&=-2\phi^2|B|^2\sqrt{det(g)}.
\end{align*}
Finally, if $H\neq 0$, we have
\begin{align}
\frac{dV_t}{dt^2}_{t=0}=\int_{M}(|\nabla _M\phi|^2+\phi^2H^2-\phi^2|B|^2)dV_M,
\end{align}
If $H\equiv0$,
we get
\begin{align}
\frac{dV_t}{dt^2}_{t=0}=\int_{M}(|\nabla _M\phi|^2-\phi^2|B|^2)dV_M,
\end{align}
we call $M$ is stable if the above quantity is nonnegative for any $\phi\in C_0^\infty(M)$.

 

标签:phi,frac,公式,align,det,二变分,曲面,end,nu
来源: https://www.cnblogs.com/Analysis-PDE/p/14643986.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有