ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【离散数学】 MIT 6.042J 笔记 - Lecture 7 Matching Problems

2021-02-15 19:29:28  阅读:362  来源: 互联网

标签:usepackage begin end definition Problems 离散数学 TMA theorem MIT


PDF 文件下载

【离散数学】MIT 6.042J - Fall 2010 - Note for Lecture 7

图片效果

1
2

LaTeX \LaTeX LATE​X 代码

% !TeX spellcheck = en_EN-EnglishUnitedKingdom
\documentclass{article}

\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{titlesec}
\usepackage{titletoc}
\usepackage{listings}
\usepackage{appendix}
\usepackage{bm}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{multirow}
\usepackage{hyperref}
\usepackage{subfig}
\usepackage{url}
\usepackage{cite}
\usepackage{array}
\usepackage[a4paper, left=2.5cm, right=2.5cm, top=2.65cm, bottom=2.54cm]{geometry}

\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{example}{Example}

\newcommand\rem{{\rm rem}}

% set the code style
\RequirePackage{listings}
\RequirePackage{xcolor}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\lstset{
	numbers=left,  
	frame=tb,
	aboveskip=3mm,
	belowskip=3mm,
	showstringspaces=false,
	columns=flexible,
	framerule=1pt,
	rulecolor=\color{gray!35},
	backgroundcolor=\color{gray!5},
	basicstyle={\ttfamily},
	numberstyle=\tiny\color{gray},
	morekeywords={},
	keywordstyle=\color{blue},
	commentstyle=\color{dkgreen},
	stringstyle=\color{mauve},
	breaklines=true,
	breakatwhitespace=true,
	tabsize=4
}

\title{\huge \bfseries Mathematics for Computer Science, MIT 6.042J - Fall 2010 - Note for Lecture 7}

\author{\Large Teddy van Jerry}
\date{\today}

\pagestyle{fancy}
\fancyhf{}
\cfoot{\thepage}
\chead{MIT 6.042J Lecture 6 - Matching Problems}

\begin{document}
	
	\maketitle
	
	{\Large Lecture 7: Matching Problems}
	
	\section{Matching}
	
	\begin{definition}
		Given Graph $G:(V,E)$, a \textbf{matching} is a subgraph of G where every node has edge 1.
	\end{definition}

	\begin{definition}
		A matching is perfect if it has size $\dfrac{|V|}{2}$.
	\end{definition}
	
	\begin{definition}
		The \textbf{weight} of a matching $\mathfrak{M}$ is the sum of the weights on the edges in $\mathfrak{M}$.
	\end{definition}

	\begin{definition}
		A \textbf{minimum-weight matching} for graph G is a perfect matching for G with the minimum weight.
	\end{definition}

	\begin{definition}
		Given a matching $\mathfrak{M}, x$ and $y$ form a \textbf{rogue couple} if they prefer each other to their mates in $\mathfrak{M}$.
	\end{definition}

	\begin{definition}
		A matching is \textbf{stable} if there are no rogue couples.
	\end{definition}

	Goal: Find a perfect matching that is stable.
	
	\section{Stable Marriage Problem}
	
	\subsection{Problem}
	
	\begin{itemize}
		\item $N$ boys and $N$ girls.
		\item Each boy has his own ranked list of all the girls.
		\item Each girl has his own ranked list of all the boys.
	\end{itemize}

	Goal: Find perfect matching with no rogue couples.
	
	\subsection{Mating Algorithm}
	
	Need to show:
	\begin{itemize}
		\item TMA terminates (quickly)
		\item Everyone gets married
		\item No rogue couples
		\item Fairness
	\end{itemize}

	\begin{theorem}
		TMA terminates in $\leqslant N^2+1$ days.
	\end{theorem}

	\begin{proof}
		(By contradiction)
		
		Suppose TMA does not terminate in $N^2+1$ days.
		
		Claim: If we don't terminate on a day, then one boy crosses a girl off his least that night.
		There are at most $N^2$ cross-outs, so there is the contradiction. 
	\end{proof}

	\begin{theorem}
		Everyone gets married in the end.
		\label{Thm}
	\end{theorem}

	Let $P = $ ``If a girl ever rejected a boy B, then G has a suitor who she prefers to be."

	\begin{lemma}
		$P$ is an invariant for TMA.
		\label{Lem}
	\end{lemma}

	\begin{proof}[Proof of Lemma \ref{Lem}]
		(By induction on days)
		
		Base Case: Day 0: No one rejected yet, so it is vacuously true.
		
		Inductive Step: Assume $P$ holds at the end of Day $d$.
		
		Case 1: G rejected B on day $d+1$. Then there was someone better. So $P$ is true.
		
		Case 2: G rejects B before $d+1$. $P$ implies G holds better one than B.
		G has same or better suitor on day $d+1$. So $P$ is true.
	\end{proof}

	\begin{proof}[Proof of Theorem \ref{Thm}]
		(By contradiction)
		
		Assume that somebody B that is not married at end.
		
		$\therefore$ B was rejected by every girl.
		
		$\therefore$ Every girl has suitor better than B. (Lemma \ref{Lem})
		
		$\therefore$ Every girl has married.
		
		However, it is impossible.
	\end{proof}
	
	\begin{theorem}
		TMA produces a stable matching.
	\end{theorem}

	\begin{proof}
		Let Bob and Gail be any pair that are not married.
		
		Case 1:  Gail rejected Bob. Gail marries someone she thinks than Bob. (Lemma \ref{Lem}) So Gail and Bob is not rogue.
		
		Case 2: Gail did not reject Bob. So Gail never serenades Gail. So Gail is lower on Bob's list than Bob's wife. So Gail and Bob is not rogue.
		
		$\therefore$ TMA is stable.
	\end{proof}

	\begin{theorem}
		TMA favors boys.
		\label{Thm_}
	\end{theorem}

	Let $S = $ ``set of all stable matchings". $S \neq \varnothing$.
	
	For each person $P$, we define the realm of possibility for $P$ to be $\left\{Q|\exists \mathfrak{M}\in S, \{P,Q\}\in\mathfrak{M}\right\}$
	
	\begin{definition}
		A person's optimal mate is his/her favorite from the realm of possibility.
	\end{definition}

	\begin{definition}
		A person's pessimal mate is his/her least favorite from the realm of possibility.
	\end{definition}

	\begin{theorem}
		TMA marries every boy to his optimal mate.
		\label{THM_1}
	\end{theorem}

	\begin{theorem}
		TMA marries every girl to her pessimal mate.
		\label{THM_2}
	\end{theorem}

	Assume Theorem \ref{THM_1} to be true, now prove Theorem \ref{THM_2}.
	
	\begin{proof}
		(By contradiction)
		
		Suppose that $\exists$ stable matching $\mathfrak{M}$ where $\exists$ girl G who fares worse than in TMA.
		
		Let $B'$ be the mate of $G$ in $\mathfrak{M}$.
		
		Let $B$ be the mate of $G$ in TMA.
		
		Let $G$ be the mate of $G'$ in TMA.
		
		However, according to Theorem \ref{THM_1}, $B$ loves $G$ better and $G$ loves $B$ better, so $B$ and $G$ is a rogue couple.
		
		$\therefore \mathfrak{M}$ is not stable.
	\end{proof}
	
	
	
	\section*{Appendix}
	
	~
	
	This note is written in \LaTeX.
	
	\LaTeX\ code in my blog: \url{https://blog.csdn.net/weixin_50012998/article/details/113818419}\\
	
	The webpage of the video: \url{https://www.bilibili.com/video/BV1zt411M7D2?p=7}
	
\end{document}

% Copyright 2021 Teddy van Jerry

ALL RIGHTS RESERVED © 2021 Teddy van Jerry
欢迎转载,转载请注明出处。


See also

Teddy van Jerry 的导航页

标签:usepackage,begin,end,definition,Problems,离散数学,TMA,theorem,MIT
来源: https://blog.csdn.net/weixin_50012998/article/details/113818419

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有