ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

np.meshgrid()

2020-12-06 15:02:59  阅读:271  来源: 互联网

标签:xy indexing meshgrid sparse np array


目录

1.meshgrid函数介绍

参数:
*xi,也就是x1,x2,…,xn :表示网格坐标的一维数组。
copy:默认为True,如果为False,就返回原始数组以节省内存。
sparse:默认值为False如果为True,则返回一个稀疏网格以节省内存。
indexing:输出的笛卡尔(默认为“ xy”)或矩阵(“ ij”)索引。(后面有例子介绍该参数)

return :返回网格坐标矩阵(返回值为list,list中包含各个方向的坐标矩阵)

看到这可能还不是很理解,举个例子就很明白了,如下图所示,下图二维平面中有6个网格坐标,可以看出他们的横坐标为[0, 1, 2],纵坐标为[0, 1],倘若只知道他们的横坐标和纵坐标的一维数组,怎么构建这6个网格坐标,meshgrid的作用就是这个。
在这里插入图片描述

>>> a = [0, 1, 2]
>>> b = [0, 1]
>>> np.meshgrid(a,b)
[array([[0, 1, 2],[0, 1, 2]]), array([[0, 0, 0],[1, 1, 1]])]
>>>

返回的结果现在还不是6个点的坐标,但是将a中的元素与b中的每个元素一一对应就得到了上述6个点的坐标。

那么indexing的作用是什么呢?

>>> np.meshgrid(a,b,indexing = 'ij')
[array([[0, 0], [1, 1],[2, 2]]), array([[0, 1],[0, 1], [0, 1]])]
>>>

也就是若indexing = ‘xy’,沿着一维方向填充x1,沿着二维方向填充x2,依次类推,返回的矩阵形状为(N2, N1, N3,…Nn),其中Ni = len(xi)。若indexing = ‘ij’,则返回的矩阵形状为(N1, N2, N3,…Nn)。具体的影响就是处理数据时,读取数据方式不同。

sparse为True时,返回稀疏的网格(为了节省内存),也就是该坐标矩阵下的元素有哪些(由于每行/列下的元素都一样,所以返回一行或一列就可以知道该坐标矩阵下的元素)。

>>> x = np.meshgrid(a,b,sparse= True)
>>> x
[array([[0, 1, 2]]), array([[0],
       [1]])]
>>>

接下来把meshgrid的结果变为最终的坐标点

>>> a = [0, 1, 2]
>>> b = [0, 1]
>>> np.meshgrid(a,b)
[array([[0, 1, 2],[0, 1, 2]]), array([[0, 0, 0],[1, 1, 1]])]
>>> x, y = np.meshgrid(a,b)
>>> x.flatten()[:, np.newaxis]
array([[0],
       [1],
       [2],
       [0],
       [1],
       [2]])
>>> y.flatten()[:, np.newaxis]
array([[0],
       [0],
       [0],
       [1],
       [1],
       [1]])
>>> xx = x.flatten()[:, np.newaxis]
>>> yy = y.flatten()[:, np.newaxis]
>>> np.c_[xx, yy]
array([[0, 0],
       [1, 0],
       [2, 0],
       [0, 1],
       [1, 1],
       [2, 1]])
>>>

np.newaxis介绍:可以在数组索引中使用np.newaxis对象添加大小为1的新尺寸,如:

>>> a.shape
(5, 7)
>>> a[:,np.newaxis,:].shape
(5, 1, 7)

>>> x = np.arange(5)
>>> x[:, np.newaxis]
array([[0],
       [1],
       [2],
       [3],
       [4]])
>>>

np.flatten()介绍:
原型声明:def flatten(self, order='C'):

Parameters
order{‘C’, ‘F’, ‘A’, ‘K’}, optional
“ C”表示按行优先(C样式)的顺序展平。“ F”表示按列主(Fortran样式)的顺序展平。“ A”表示如果a在内存中是连续的,则按列优先顺序进行展平;否则,按行优先进行展平。“ K”表示按元素在内存中出现的顺序展平 。默认值为“ C”。
Returns
返回展平为一维的数组副本。


2.meshgrid函数官方说明

meshgrid的官方api

def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
    """
    Return coordinate matrices from coordinate vectors.

    Make N-D coordinate arrays for vectorized evaluations of
    N-D scalar/vector fields over N-D grids, given
    one-dimensional coordinate arrays x1, x2,..., xn.

    .. versionchanged:: 1.9
       1-D and 0-D cases are allowed.

    Parameters
    ----------
    x1, x2,..., xn : array_like
        1-D arrays representing the coordinates of a grid.
    indexing : {'xy', 'ij'}, optional
        Cartesian ('xy', default) or matrix ('ij') indexing of output.
        See Notes for more details.

        .. versionadded:: 1.7.0
    sparse : bool, optional
        If True a sparse grid is returned in order to conserve memory.
        Default is False.

        .. versionadded:: 1.7.0
    copy : bool, optional
        If False, a view into the original arrays are returned in order to
        conserve memory.  Default is True.  Please note that
        ``sparse=False, copy=False`` will likely return non-contiguous
        arrays.  Furthermore, more than one element of a broadcast array
        may refer to a single memory location.  If you need to write to the
        arrays, make copies first.

        .. versionadded:: 1.7.0

    Returns
    -------
    X1, X2,..., XN : ndarray
        For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,
        return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'
        or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'
        with the elements of `xi` repeated to fill the matrix along
        the first dimension for `x1`, the second for `x2` and so on.

    Notes
    -----
    This function supports both indexing conventions through the indexing
    keyword argument.  Giving the string 'ij' returns a meshgrid with
    matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing.
    In the 2-D case with inputs of length M and N, the outputs are of shape
    (N, M) for 'xy' indexing and (M, N) for 'ij' indexing.  In the 3-D case
    with inputs of length M, N and P, outputs are of shape (N, M, P) for
    'xy' indexing and (M, N, P) for 'ij' indexing.  The difference is
    illustrated by the following code snippet::

        xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij')
        for i in range(nx):
            for j in range(ny):
                # treat xv[i,j], yv[i,j]

        xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
        for i in range(nx):
            for j in range(ny):
                # treat xv[j,i], yv[j,i]

    In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

    See Also
    --------
    index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
                     using indexing notation.
    index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
                     using indexing notation.

    Examples
    --------
    >>> nx, ny = (3, 2)
    >>> x = np.linspace(0, 1, nx)
    >>> y = np.linspace(0, 1, ny)
    >>> xv, yv = np.meshgrid(x, y)
    >>> xv
    array([[0. , 0.5, 1. ],
           [0. , 0.5, 1. ]])
    >>> yv
    array([[0.,  0.,  0.],
           [1.,  1.,  1.]])
    >>> xv, yv = np.meshgrid(x, y, sparse=True)  # make sparse output arrays
    >>> xv
    array([[0. ,  0.5,  1. ]])
    >>> yv
    array([[0.],
           [1.]])

    `meshgrid` is very useful to evaluate functions on a grid.

    >>> import matplotlib.pyplot as plt
    >>> x = np.arange(-5, 5, 0.1)
    >>> y = np.arange(-5, 5, 0.1)
    >>> xx, yy = np.meshgrid(x, y, sparse=True)
    >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
    >>> h = plt.contourf(x,y,z)
    >>> plt.show()

    """

标签:xy,indexing,meshgrid,sparse,np,array
来源: https://blog.csdn.net/qq_38048756/article/details/110009968

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有