ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Fundamental of Computer Graphics (third edition) Chapter 5 Exercises

2020-04-17 18:08:42  阅读:293  来源: 互联网

标签:Chapter begin mathbf third edition vmatrix && end lambda


Exercises

  1. Write an implicit equation for the 2D line through points(\(x_0,y_0\)) and (\(x_1,y_1\)) using a 2D determinant.

有一点\(P(x,y)\),在\(P_0,P_1\)构成的直线上,则三点构成的平行四边形面积一定为0.即\(P_1P_0 \times PP_0 = 0\),写成行列式为

\[\begin{vmatrix} x-x_0 & x_1-x_0 \\ y-y_0 & y_1-y_0 \end{vmatrix} = 0\]

  1. Show that if the columns of a matrix are orthonormal, then so are the rows.

根据正交矩阵的性质\(R^TR = I = RR^T\)

如果一个矩阵是正交的,那么他的转置矩阵也是正交的

  1. Prove the properties of matrix determinants state in Equations (5.5)-(5.7).

(5.5): \(|\mathbf{AB}| = |\mathbf{A}||\mathbf{B}|\)

根据\(\begin{vmatrix}A && O \\ C && B\end{vmatrix} = |\mathbf{A}||\mathbf{B}|,\begin{vmatrix}C && A \\ B && O\end{vmatrix} = (-1)^{n^2}|\mathbf{A}||\mathbf{B}|\)

构造矩阵
\(\begin{pmatrix}A && O\\ -E && B \end{pmatrix}\begin{pmatrix}E && B\\ O && E \end{pmatrix} = \begin{pmatrix}A && AB\\ -E && O \end{pmatrix}\)

对右边取行列式

\[(-1)^{n^2}|-E||AB|=(-1)^{n^2+n}|AB| = |AB| \]

左边两个矩阵的行列式乘积为\(|A||B|\),于是(5.5)得证

(5.6) \(|A^{-1}| = \frac{1}{|A|}\)

\(AA^{-1} = E\) 根据(5.5) \(|A||A^{-1}|=1\)
\because $A^{-1}存在,|A|\ne 0 \therefore |A^{-1}| = \frac{1}{|A|} (5.6)得证 $

(5.7) \(|A^T| = |A|\)

考虑一下数学归纳,对于\(n=1\),显然成立
对于\(n=k\)时,对\(A\)对\(i\)行进行展开
\(|A| = \sum_{j=1}^{k} a_{ij}A_{ij}\)
对\(A^T\)对\(i\)列进行展开
\(|A^T| = \sum_{j=1}^{k} b_{ji}A^T_{ji}\)

其中\(a_{ij} = b_{ji}, A^T_{ji} = (A_{ij})^T, A_{ij}\)是n=k-1的情况,我们假设他成立,则n=k也成立

  1. Show that the eigenvalues of a diagonal matrix are its diagonal elements.

\(0 = |A-\lambda E|\) 解得 \(\lambda\)
对于对角阵,显然多项式的零点就是A对角线上的元素

  1. Show that for a square matrix \(A\), \(AA^T\) is a symmetric matrix.

设\(AA^T=B, [a_i]\)是\(A\)的行向量组,则也是\(A^T\)的列向量组
\(\because B_{ij} = a_i\cdot a_j = B_{ji}\)
\(\therefore B = B^T\)

  1. Show that for three 3D vector \(a,b,c\), the following identity holds: \(|abc| = (a \times b) \cdot c\).

\(M = |abc| = \begin{vmatrix}a_x&&b_x&& c_x\\a_y&&b_y&&c_y\\a_z&&b_z&&c_z\end{vmatrix} = c_x*M_{13} + c_y*M_{23} + c_z * M_{33} = M_{i3} \cdot c\)

\(\because M_{13} = \begin{vmatrix}a_y && b_y\\a_z && b_z\end{vmatrix}, M_{23} = -\begin{vmatrix}a_x && b_x\\a_y && b_y\end{vmatrix}, M_{33} = \begin{vmatrix}a_x && b_x\\a_z && b_z\end{vmatrix}\)
\(\therefore M_{i3} = (a \times b), |abc| = (a \times b) \cdot c\)

  1. Explain why the volume of the tetrahedron with side vectors \(a,b,c\)(see Figure 5.2) is given by \(|abc|/6\).

四面体的体积\(V = \frac{1}{3}S*h\)

我们让\(b,c\)构成的平面做底面 \(S = \frac{1}{2}b \times c\)
设\(a\)与底面单位法向量\(n\)的夹角为\(\theta\) 则\(h = a*cos\theta = a \cdot n\)
于是 \(V = \frac{1}{6} a \cdot (b \times c) = \frac{1}{6}|abc|\)

  1. Demonstrate the four interpretations of matrix-matrix multiplication by taking the following matrix-matrix multiplication code, rearranging the nested loops, and interpreting the resulting code in terms of matrix and vector operations
function mat-mult(in a[m][p], in b[p][n], out c[m][n]){
    // the array c is initialized to zero
    for i = 1 to m
        for j = 1 to n
            for k = 1 to p
                c[i][j] += a[i][k] * b[k][j]
}

三重循环是相互无关的,调节循环的位置可以得到对矩阵乘法不同的解释

  • \(c_{ij} = \vec{a_i} \cdot \vec{b_j}\)
  • $c^{col}_{j} = A \cdot \vec{b_j} $
  • \(c^{row}_{i} = \vec{a_i} \cdot B\)
  • \(C = A \cdot B\)
  1. Prove that if A,Q, and D satisfy Equation(5.14), v is the \(i\)th row of Q, and \(\lambda\) is the \(i\)th entry on the diagonal of D, then v is an eigenvector of A with eigenvalue \(\lambda\).

感性理解一下 \(\mathbf{A} = \mathbf{QDQ}^T \rightarrow \mathbf{A}v = \mathbf{QDQ}^Tv\)
\(\mathbf{Q}\)是正交矩阵\(Q^Tv\)只有在第\(i\)行为1其他全为0,再右乘对角阵,得到\(D'_{i} = \lambda\) 其余全为0 的向量
所以 \(\mathbf{A}v = \mathbf{QDQ}^Tv = QD'\),\(QD'\)就相当于在\(Q\)第\(i\)列的向量乘上\(\lambda\)即\(\lambda v\)

  1. Prove that if A,Q, and D satisfy Equation(5.14), the eigenvalues of A are all distince, and v is an eigenvector of A with eigenvalue \(\lambda\), then for some \(i\), v is the row of Q and \(\lambda\) is the \(i\)th entry on the diagonal of D

设\(\lambda_1,\lambda_2\)是\(A\)的不同特征值,\(a_1,a_2\)是他们对应的特征向量
则有$Aa_1 = \lambda_1a_1,Aa_2 = \lambda_2a_2 \( 对第一个式子左乘\)aT_2$得$a_2TAa_1 = \lambda_1a_2^Ta_1$
继续化简 \(a_2^TAa_1 = (A^Ta_2)^Ta_1=(Aa_2)^Ta_1=(\lambda_2a_2)^Ta_1=\lambda_2a^T_2a_1\)
于是 \(\lambda_2a^T_2a_1 = \lambda_1a_2^Ta_1 \rightarrow (\lambda_1 - \lambda_2)a^T_2a_1 = 0\)
\(\lambda_1 \ne \lambda_2 \therefore a_2 a_1\) 正交

  1. Given the (\(x,y\)) corordinates of the three vertices of a 2D triangle, explain why the area is given by

\[\frac{1}{2}\begin{vmatrix}x_0 && x_1 && x_2 \\ y_0 && y_1 && y_2 \\ 1 && 1 && 1\end{vmatrix} \]

对原式进行化简,\(c_1-c_3,c_2-c_3\)

\[\frac{1}{2}\begin{vmatrix}x_0-x_2 && x_1-x_2 && x_2 \\ y_0-y_2 && y_1-y_2 && y_2 \\ 0 && 0 && 1\end{vmatrix} \]

对\(r3\)展开

\[\frac{1}{2}\begin{vmatrix}x_0-x_2 && x_1-x_2 \\ y_0-y_2 && y_1-y_2 \end{vmatrix} \]

即为\(x_0x_2,x_1x_2\)两个向量点乘乘二分之一的形式,即为组成的三角形的面积

标签:Chapter,begin,mathbf,third,edition,vmatrix,&&,end,lambda
来源: https://www.cnblogs.com/xxrlz/p/12721495.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有