ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

常用积性函数的线性筛法整理

2019-10-25 12:00:09  阅读:229  来源: 互联网

标签:prime 筛法 积性 素数 st int 因子 线性 sd


简单整理推导加代码,留复习用。


线性筛素数

最简单也最基础,直接看代码就好了\(……\)

code:

void Euler_Phi_Prime(int n) {
    is_prime[1] = true;
    for (int i = 2; i <= n; i++) {
        if (!is_prime[i]) prime[++cnt] = i;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            is_prime[i * prime[j]] = true;
            if (i % prime[j] == 0) break;
        }
    }
}

线性筛欧拉函数

根据欧拉函数的两条性质\(:\)

  • 设\(p\)为素数,若\(p|n\)且\(p^2|n\),则\(\varphi(n)=\varphi(n/p)* p\)

  • 设\(p\)为素数,若\(p|n\)且\(p^2 \nshortmid n\),则\(\varphi(n)=\varphi(n/p)* (p-1)\)

对于第一条性质,若\(p|n\)且\(p^2|n\),那么显然\(n\)和\(n/p\)包含相同的质因子,并且将两者按照欧拉函数计算公式展开后只有\(p\)的指数不同,上下相除结果即为\(p\),故此性质成立。

对于第二条性质,若\(p|n\)且\(p^2 \nshortmid n\),说明\(n\)和\(n/p\)互质,根据欧拉函数为积性函数,我们显然可以得到\(\varphi(n)=\varphi(n/p) * \varphi(p)\),又因为\(\varphi(p)=p-1\),所以显然成立。

void Euler_Phi_Prime(int n) {
    phi[0] = phi[1] = 0;
    for (int i = 2; i <= n; i++) {
        if (!phi[i]) prime[++cnt] = i, phi[i] = i - 1;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            phi[i * prime[j]] = phi[i] * ((i % prime[j]) ? (prime[j] - 1) : prime[j]);
            if (i % prime[j] == 0) break;
        }
    }
}

线性求约数个数

考虑我们根据算数基本定理得到的推论之一:

一个正整数\(N\)的约数个数为:

\[d(N)=\prod_{i=1}^{m}(1+c_i)\]

在筛的过程中,我们记录\(N\)的最小素因子\(st[N]\)

我们根据筛素数分成三种情况考虑:

\(1.\)当前的数\(i\)为素数的时候,显然它只有\(1\)和自己两个因子且只有自己一个素因子,此时\(d(i)=2,\ st[i]=1\)

\(2.\)当\(i\) % \(prime[j]!=0\)时,显然\(i\)不包含\(prime[j]\)这个质因子,且\(prime[j]\)一定是\(i * prime[j]\)的最小质因子,因为我们是在从小到大枚举素数,这样\(i * prime[j]\)就相当于比\(i\)多了一个因子\(prime[j]\),那么\(i * prime[j]\)的约数和就为\(:\)

\[d(i * prime[j])=(1+c_1)(1+c_2)……(1+c_m)(1+1)\]

最后的\((1+1)\)即表示质因数分解后\(prime[j]\)的指数为\(1\),此时\(d(i * prime[j])=d(i) * d(prime[j])\) \(st[i * prime[j]]=1\).

\(3.\)当\(i\)%\(prime[j]==0\)时,显然\(i\)是包含\(prime[j]\)这个质因子的,\(i * prime[j]\)只是比\(i\)多了一个\(i\)的最小质因子,\((\)因为是从小到大枚举素数的\()\)即\(:\)

\[(i * prime[j])=(1+c_1+1)(1+c_2)……(1+c_m)\]

所以此时\(d(i * prime[j])=d(i) / (st[i] + 1) * (st[i] + 2)\) \(st[i * prime[j]]=st[i]+1\)

code:

void Euler_Phi_Prime(int n) {
    is_prime[1] = true, d[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!is_prime[i]) prime[++cnt] = i, d[i] = 2, st[i] = 1;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            is_prime[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                d[i * prime[j]] = d[i] / (st[i] + 1) * (st[i] + 2);
                st[i * prime[j]] = st[i] + 1; break;
            }
            d[i * prime[j]] = d[i] * d[prime[j]], st[i * prime[j]] = 1;
        }
    }
}

线性筛约数和

考虑算术基本定理的另一个推论\(:\)

一个正整数\(N\)的约数和为\(:\)

\[sd(N)=\prod_{i=1}^{m}{\large\lbrace}\sum_{j=0}^{c_i}(p_i)^j{\large\rbrace}\]

\[sd(N)=(1+p_1+p_1^2+ ……+p_1^{c_1})(1+p_2+p_2^2+ ……+p_2^{c_2})……(1+p_m+p_m^2+ ……+p_m^{c_m})\]

筛的过程中我们记录\(st[i]=(1+p_i+p_i^2+ ……+p_i^{c_i})\)

仍旧按筛素数的情况分成三种情况考虑\(:\)

\(1.\)当当前的数\(i\)为质数时,显然\(i\)只有\(1\)和自己两个因子,显然\(sd[i]=st[i]=i+1\)

\(2.\)当\(i\)%\(prime[j]!=0\)时,显然\(i\)并不包含\(prime[j]\)这个质因子,且\(prime[j]\)一定是\(i * prime[j]\)的最小质因子,因为我们是在从小到大枚举素数,这样\(i * prime[j]\)就相当于比\(i\)多了一个因子\(prime[j]\),答案多累加上\(prime[j]\)的贡献即可\(:\)

\[sd(i* prime[j])=(1+p_1+p_1^2+ ……+p_1^{c_1})……(1+p_m+p_m^2+ ……+p_m^{c_m})(1+prime[j])\]

此时,\(sd[i* prime[j]]=sd[i] * sd[prime[j]],\ st[i* prime[j]]=prime[j]+1\)

\(3.\)当\(i\)%\(prime[j]==0\)时,显然\(i\)是包含\(prime[j]\)这个质因子的,\(i * prime[j]\)只是比\(i\)多了一个\(i\)的最小质因子,\((\)因为是从小到大枚举素数的\()\),所以\(i* prime[j]\)的约数和就表示为\(:\)

\[sd(i * prime[j])=(1+p_1+p_1^2+ ……+p_1^{c_1}+p_1^{c_1+1})……(1+p_m+p_m^2+ ……+p_m^{c_m})\]

此时,\(sd[i * prime[j]]=sd[i] / st[i] * (st[i] * prime[j]+1),\ st[i * prime[j]]=st[i]* prime[j]+1\)

code:

void Euler_Phi_Prime(int n) {
    is_prime[1] = true, sd[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!is_prime[i]) prime[++cnt] = i, sd[i] = i + 1, st[i] = i + 1;
        for (int j = 1; j <= cnt && i * prime[j] <= n; j++) {
            is_prime[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                sd[i * prime[j]] = sd[i] / st[i] * (st[i] * prime[j] + 1);
                st[i * prime[j]] = st[i] * prime[j] + 1; break;
            }
            sd[i * prime[j]] = sd[i] * sd[prime[j]], st[i * prime[j]] = prime[j] + 1;
        }
    }
}

线性筛莫比乌斯函数

窝太菜了,证明还是先鸽着吧\(……\)

code:

void Euler_phi(int n) {
    is_prime[1] = true, mu[1] = 1;
    for (int i = 2;  i <= n; i++) {
        if (!is_prime[i])
            prime[++cnt] = i, mu[i] = -1;
        for (int j = 1; j <= cnt && (i * prime[j]) <= n; j++) {
            is_prime[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            }
            mu[i * prime[j]] = -mu[i];
        }
    }
}

标签:prime,筛法,积性,素数,st,int,因子,线性,sd
来源: https://www.cnblogs.com/Hydrogen-Helium/p/11737268.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有