ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

欧拉筛素数及积性函数

2022-09-03 01:33:27  阅读:55  来源: 互联网

标签:Prime 函数 积性 int 素数 mv 欧拉


欧拉筛素数及积性函数

欧拉筛素数

int Prime[N], tot;
bool Not[N];//true 则 i 不是素数
void GetPrime(const int& n = N - 1) {
    Not[1] = true;
    for (int i = 2; i <= n; ++i) {
        if (!Not[i]) Prime[++tot] = i;
        for (int j = 1; j <= tot && i * Prime[j] <= n; ++j) {
            Not[i * Prime[j]] = true;
            if (i % Prime[j] == 0) break;
        }
    }
}

常见的积性函数

/*
 *@  Prime[i]   : 第i个素数
 *@  mv[i]      : i的最小质因子
 *@  f[i]       : 积性函数
质数的最小质因子为它本身
*/
int Prime[N], mv[N], tot;
void GetPrime(const int& n = N - 1) {
    // f[1]=1;
    for (int i = 2; i <= n; ++i) {
        if (!mv[i]) {
            Prime[++tot] = i;
            mv[i] = i;
            // f[i]=...;
        }
        for (int j = 1; j <= tot && i * Prime[j] <= n; ++j) {
            mv[i * Prime[j]] = Prime[j];
            if (i % Prime[j] == 0) {
                // f[Prime[j]*i]=...;
                break;
            }
            //f[i * Prime[j]] = f[i] * f[Prime[j]];
        }
    }
}

常见的积性函数全家桶

/*
 *@ Prime[i]     :第i个素数
 *@ mv[i]        :i的最小质因子(判断是否为素数)
 *@ sigma0[i]    :i的约数个数和
 *@ sigma1[i]    :i的约数的和
 *@ phi[i]       :欧拉函数[1,i]中与i互质的数的个数
 *@ mobius[i]    :i的莫比乌斯函数
 */
constexpr int M = static_cast<int>(1e7 + 5);
int Prime[M], sigma0[M], sigma1[M], mv[M], mobius[M], phi[M], tot;
void GetPrimeAll(const int& n = M - 1) {
    sigma0[1] = sigma1[1] = phi[1] = mobius[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!mv[i]) {
            Prime[++tot] = i;
            mv[i] = i;
            sigma0[i] = 2;
            sigma1[i] = i + 1;
            phi[i] = i - 1;
            mobius[i] = -1;
        }
        for (int j = 1; j <= tot && i * Prime[j] <= n; ++j) {
            mv[i * Prime[j]] = Prime[j];
            if (i % Prime[j] == 0) {
                sigma0[i * Prime[j]] = sigma0[i] * 2 - sigma0[i / Prime[j]];
                sigma1[i * Prime[j]] = sigma1[i] * (Prime[j] + 1) - Prime[j] * sigma1[i / Prime[j]];
                phi[i * Prime[j]] = phi[i] * Prime[j];
                mobius[i * Prime[j]] = 0;
                break;
            }
            sigma0[i * Prime[j]] = sigma0[i] * sigma0[Prime[j]];
            sigma1[i * Prime[j]] = sigma1[i] * sigma1[Prime[j]];
            phi[i * Prime[j]] = phi[i] * phi[Prime[j]];
            mobius[i * Prime[j]] = mobius[i] * mobius[Prime[j]];
        }
    }
}

普遍的积性函数

/*
 *@  Prime[i]   : 第i个素数
 *@  low[i]   : i的最小质因子的幂次值
 *@  mv[i]     : i的最小质因子
 *@  f[i]       : 积性函数
质数的最小质因子是它本身,即mv[i]=i
*/
int Prime[N], mv[N], low[N], tot = 0;
long long f[N];
void GetPrime(const int& n = N - 1) {
    f[1] = low[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!mv[i]) mv[i] = i, Prime[++tot] = i, low[i] = i, f[i] = /*do something*/;  //质数处理
        for (int j = 1; j <= tot && i * Prime[j] <= n; ++j) {
            mv[i * Prime[j]] = Prime[j];
            if (i % Prime[j] == 0) {
                low[i * Prime[j]] = low[i] * Prime[j];
                f[i * Prime[j]] = low[i] == i ? /*do something*/ : f[i / low[i]] * f[low[i] * Prime[j]];
                //递推处理(找规律)
                break;
            }
            low[i * Prime[j]] = Prime[j];
            f[i * Prime[j]] = f[i] * f[Prime[j]];
        }
    }
}

标签:Prime,函数,积性,int,素数,mv,欧拉
来源: https://www.cnblogs.com/Cattle-Horse/p/16651805.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有