ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

第三周周总结

2022-07-19 02:32:07  阅读:148  来源: 互联网

标签:总结 matT matrix coeff 第三周 Scalar eigenvalues EigenSolver


本周主要是矩阵计算的相关任务

一下是 源码

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_EIGENSOLVER_H
#define EIGEN_EIGENSOLVER_H

#include "./RealSchur.h"

namespace Eigen { 

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class EigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of general matrices
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * eigendecomposition; this is expected to be an instantiation of the Matrix
  * class template. Currently, only real matrices are supported.
  *
  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
  *
  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
  * have blocks of the form
  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
  * this variant of the eigendecomposition the pseudo-eigendecomposition.
  *
  * Call the function compute() to compute the eigenvalues and eigenvectors of
  * a given matrix. Alternatively, you can use the 
  * EigenSolver(const MatrixType&, bool) constructor which computes the
  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
  * pseudoEigenvectors() methods allow the construction of the
  * pseudo-eigendecomposition.
  *
  * The documentation for EigenSolver(const MatrixType&, bool) contains an
  * example of the typical use of this class.
  *
  * \note The implementation is adapted from
  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
  * Their code is based on EISPACK.
  *
  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
  */
template<typename _MatrixType> class EigenSolver
{
  public:

    /** \brief Synonym for the template parameter \p _MatrixType. */
    typedef _MatrixType MatrixType;

    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };

    /** \brief Scalar type for matrices of type #MatrixType. */
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3

    /** \brief Complex scalar type for #MatrixType. 
      *
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
      * \c float or \c double) and just \c Scalar if #Scalar is
      * complex.
      */
    typedef std::complex<RealScalar> ComplexScalar;

    /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 
      *
      * This is a column vector with entries of type #ComplexScalar.
      * The length of the vector is the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;

    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
      *
      * This is a square matrix with entries of type #ComplexScalar. 
      * The size is the same as the size of #MatrixType.
      */
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;

    /** \brief Default constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
      *
      * \sa compute() for an example.
      */
    EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {}

    /** \brief Default constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa EigenSolver()
      */
    explicit EigenSolver(Index size)
      : m_eivec(size, size),
        m_eivalues(size),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realSchur(size),
        m_matT(size, size), 
        m_tmp(size)
    {}

    /** \brief Constructor; computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are
      *    computed. 
      *
      * This constructor calls compute() to compute the eigenvalues
      * and eigenvectors.
      *
      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
      *
      * \sa compute()
      */
    template<typename InputType>
    explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_isInitialized(false),
        m_eigenvectorsOk(false),
        m_realSchur(matrix.cols()),
        m_matT(matrix.rows(), matrix.cols()), 
        m_tmp(matrix.cols())
    {
      compute(matrix.derived(), computeEigenvectors);
    }

    /** \brief Returns the eigenvectors of given matrix. 
      *
      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before, and
      * \p computeEigenvectors was set to true (the default).
      *
      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
      * matrix returned by this function is the matrix \f$ V \f$ in the
      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
      *
      * Example: \include EigenSolver_eigenvectors.cpp
      * Output: \verbinclude EigenSolver_eigenvectors.out
      *
      * \sa eigenvalues(), pseudoEigenvectors()
      */
    EigenvectorsType eigenvectors() const;

    /** \brief Returns the pseudo-eigenvectors of given matrix. 
      *
      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before, and
      * \p computeEigenvectors was set to true (the default).
      *
      * The real matrix \f$ V \f$ returned by this function and the
      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
      * satisfy \f$ AV = VD \f$.
      *
      * Example: \include EigenSolver_pseudoEigenvectors.cpp
      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
      *
      * \sa pseudoEigenvalueMatrix(), eigenvectors()
      */
    const MatrixType& pseudoEigenvectors() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
      return m_eivec;
    }

    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
      *
      * \returns  A block-diagonal matrix.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before.
      *
      * The matrix \f$ D \f$ returned by this function is real and
      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
      * blocks of the form
      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
      * These blocks are not sorted in any particular order.
      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
      *
      * \sa pseudoEigenvectors() for an example, eigenvalues()
      */
    MatrixType pseudoEigenvalueMatrix() const;

    /** \brief Returns the eigenvalues of given matrix. 
      *
      * \returns A const reference to the column vector containing the eigenvalues.
      *
      * \pre Either the constructor 
      * EigenSolver(const MatrixType&,bool) or the member function
      * compute(const MatrixType&, bool) has been called before.
      *
      * The eigenvalues are repeated according to their algebraic multiplicity,
      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
      * are not sorted in any particular order.
      *
      * Example: \include EigenSolver_eigenvalues.cpp
      * Output: \verbinclude EigenSolver_eigenvalues.out
      *
      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
      *     MatrixBase::eigenvalues()
      */
    const EigenvalueType& eigenvalues() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_eivalues;
    }

    /** \brief Computes eigendecomposition of given matrix. 
      * 
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
      *    eigenvalues are computed; if false, only the eigenvalues are
      *    computed. 
      * \returns    Reference to \c *this
      *
      * This function computes the eigenvalues of the real matrix \p matrix.
      * The eigenvalues() function can be used to retrieve them.  If 
      * \p computeEigenvectors is true, then the eigenvectors are also computed
      * and can be retrieved by calling eigenvectors().
      *
      * The matrix is first reduced to real Schur form using the RealSchur
      * class. The Schur decomposition is then used to compute the eigenvalues
      * and eigenvectors.
      *
      * The cost of the computation is dominated by the cost of the
      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors 
      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
      *
      * This method reuses of the allocated data in the EigenSolver object.
      *
      * Example: \include EigenSolver_compute.cpp
      * Output: \verbinclude EigenSolver_compute.out
      */
    template<typename InputType>
    EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);

    /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_info;
    }

    /** \brief Sets the maximum number of iterations allowed. */
    EigenSolver& setMaxIterations(Index maxIters)
    {
      m_realSchur.setMaxIterations(maxIters);
      return *this;
    }

    /** \brief Returns the maximum number of iterations. */
    Index getMaxIterations()
    {
      return m_realSchur.getMaxIterations();
    }

  private:
    void doComputeEigenvectors();

  protected:
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
    }
    
    MatrixType m_eivec;
    EigenvalueType m_eivalues;
    bool m_isInitialized;
    bool m_eigenvectorsOk;
    ComputationInfo m_info;
    RealSchur<MatrixType> m_realSchur;
    MatrixType m_matT;

    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
    ColumnVectorType m_tmp;
};

template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
  Index n = m_eivalues.rows();
  MatrixType matD = MatrixType::Zero(n,n);
  for (Index i=0; i<n; ++i)
  {
    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
      matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
    else
    {
      matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
                                       -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
      ++i;
    }
  }
  return matD;
}

template<typename MatrixType>
typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
{
  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
  const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
  Index n = m_eivec.cols();
  EigenvectorsType matV(n,n);
  for (Index j=0; j<n; ++j)
  {
    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
    {
      // we have a real eigen value
      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
      matV.col(j).normalize();
    }
    else
    {
      // we have a pair of complex eigen values
      for (Index i=0; i<n; ++i)
      {
        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
      }
      matV.col(j).normalize();
      matV.col(j+1).normalize();
      ++j;
    }
  }
  return matV;
}

template<typename MatrixType>
template<typename InputType>
EigenSolver<MatrixType>& 
EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
{
  check_template_parameters();
  
  using std::sqrt;
  using std::abs;
  using numext::isfinite;
  eigen_assert(matrix.cols() == matrix.rows());

  // Reduce to real Schur form.
  m_realSchur.compute(matrix.derived(), computeEigenvectors);
  
  m_info = m_realSchur.info();

  if (m_info == Success)
  {
    m_matT = m_realSchur.matrixT();
    if (computeEigenvectors)
      m_eivec = m_realSchur.matrixU();
  
    // Compute eigenvalues from matT
    m_eivalues.resize(matrix.cols());
    Index i = 0;
    while (i < matrix.cols()) 
    {
      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 
      {
        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
        if(!(isfinite)(m_eivalues.coeffRef(i)))
        {
          m_isInitialized = true;
          m_eigenvectorsOk = false;
          m_info = NumericalIssue;
          return *this;
        }
        ++i;
      }
      else
      {
        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
        Scalar z;
        // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
        // without overflow
        {
          Scalar t0 = m_matT.coeff(i+1, i);
          Scalar t1 = m_matT.coeff(i, i+1);
          Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
          t0 /= maxval;
          t1 /= maxval;
          Scalar p0 = p/maxval;
          z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
        }
        
        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
        if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
        {
          m_isInitialized = true;
          m_eigenvectorsOk = false;
          m_info = NumericalIssue;
          return *this;
        }
        i += 2;
      }
    }
    
    // Compute eigenvectors.
    if (computeEigenvectors)
      doComputeEigenvectors();
  }

  m_isInitialized = true;
  m_eigenvectorsOk = computeEigenvectors;

  return *this;
}


template<typename MatrixType>
void EigenSolver<MatrixType>::doComputeEigenvectors()
{
  using std::abs;
  const Index size = m_eivec.cols();
  const Scalar eps = NumTraits<Scalar>::epsilon();

  // inefficient! this is already computed in RealSchur
  Scalar norm(0);
  for (Index j = 0; j < size; ++j)
  {
    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
  }
  
  // Backsubstitute to find vectors of upper triangular form
  if (norm == Scalar(0))
  {
    return;
  }

  for (Index n = size-1; n >= 0; n--)
  {
    Scalar p = m_eivalues.coeff(n).real();
    Scalar q = m_eivalues.coeff(n).imag();

    // Scalar vector
    if (q == Scalar(0))
    {
      Scalar lastr(0), lastw(0);
      Index l = n;

      m_matT.coeffRef(n,n) = Scalar(1);
      for (Index i = n-1; i >= 0; i--)
      {
        Scalar w = m_matT.coeff(i,i) - p;
        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));

        if (m_eivalues.coeff(i).imag() < Scalar(0))
        {
          lastw = w;
          lastr = r;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == Scalar(0))
          {
            if (w != Scalar(0))
              m_matT.coeffRef(i,n) = -r / w;
            else
              m_matT.coeffRef(i,n) = -r / (eps * norm);
          }
          else // Solve real equations
          {
            Scalar x = m_matT.coeff(i,i+1);
            Scalar y = m_matT.coeff(i+1,i);
            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
            Scalar t = (x * lastr - lastw * r) / denom;
            m_matT.coeffRef(i,n) = t;
            if (abs(x) > abs(lastw))
              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
            else
              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
          }

          // Overflow control
          Scalar t = abs(m_matT.coeff(i,n));
          if ((eps * t) * t > Scalar(1))
            m_matT.col(n).tail(size-i) /= t;
        }
      }
    }
    else if (q < Scalar(0) && n > 0) // Complex vector
    {
      Scalar lastra(0), lastsa(0), lastw(0);
      Index l = n-1;

      // Last vector component imaginary so matrix is triangular
      if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
      {
        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
      }
      else
      {
        ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
        m_matT.coeffRef(n-1,n-1) = numext::real(cc);
        m_matT.coeffRef(n-1,n) = numext::imag(cc);
      }
      m_matT.coeffRef(n,n-1) = Scalar(0);
      m_matT.coeffRef(n,n) = Scalar(1);
      for (Index i = n-2; i >= 0; i--)
      {
        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
        Scalar w = m_matT.coeff(i,i) - p;

        if (m_eivalues.coeff(i).imag() < Scalar(0))
        {
          lastw = w;
          lastra = ra;
          lastsa = sa;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == RealScalar(0))
          {
            ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
            m_matT.coeffRef(i,n-1) = numext::real(cc);
            m_matT.coeffRef(i,n) = numext::imag(cc);
          }
          else
          {
            // Solve complex equations
            Scalar x = m_matT.coeff(i,i+1);
            Scalar y = m_matT.coeff(i+1,i);
            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
            if ((vr == Scalar(0)) && (vi == Scalar(0)))
              vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));

            ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
            m_matT.coeffRef(i,n-1) = numext::real(cc);
            m_matT.coeffRef(i,n) = numext::imag(cc);
            if (abs(x) > (abs(lastw) + abs(q)))
            {
              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
            }
            else
            {
              cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
              m_matT.coeffRef(i+1,n-1) = numext::real(cc);
              m_matT.coeffRef(i+1,n) = numext::imag(cc);
            }
          }

          // Overflow control
          Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
          if ((eps * t) * t > Scalar(1))
            m_matT.block(i, n-1, size-i, 2) /= t;

        }
      }
      
      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
      n--;
    }
    else
    {
      eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
    }
  }

  // Back transformation to get eigenvectors of original matrix
  for (Index j = size-1; j >= 0; j--)
  {
    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
    m_eivec.col(j) = m_tmp;
  }
}

} // end namespace Eigen

#endif // EIGEN_EIGENSOLVER_H

 

标签:总结,matT,matrix,coeff,第三周,Scalar,eigenvalues,EigenSolver
来源: https://www.cnblogs.com/zhuzhurr/p/16492597.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有