ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【刷题】综合模拟2——2019浙大上机模拟(晴神)

2019-03-11 21:48:53  阅读:271  来源: 互联网

标签:晴神 nmax false int Sample ++ 2019 Input 模拟


文章目录

A - next[i]

Problem Description

在字符串匹配的KMP算法中有一个重要的概念是next数组,求解它的过程让不少同学伤透了心。next数组的直接语义其实是:使“长度为L的前缀”与“长度为L的后缀”相同的最大L,且满足条件的前后缀不能是原字符串本身。

例如对字符串"ababa"来说,长度为1的前缀与后缀都是"a",它们相同;长度为2的前缀与后缀分别是"ab"和"ba",它们不相同;长度为3的前缀与后缀都是"aba",它们相同;长度为4的前缀与后缀分别是"abab"和"baba",它们不相同。因此对字符串"ababa"来说,使“长度为L的前缀”与“长度为L的后缀”相同的最大L是3。

现在我们把这个最大的L值称为原字符串S的next值。在此概念的基础上,对给定的字符串S,下标为从1到N,那么next[i]就是指子串S[1…i]的next值。

现在给定一个字符串,下标从1到N,然后给一个下标i,求next[i]。

Input

每个输入文件一组数据。

只有一行,输入一个仅由小写字母组成的长度为N(1<=N<=100)的字符串、与一个下标i(1<=i<=N)。

Output

一个整数,即next[i]。

Sample Input 1

ababa 5

Sample Output 1

3

Sample Input 2

ababab 4

Sample Output 2

2

Sample Input 3

ab 2

Sample Output 3

0

分析:掌握具体算法即可,算法详解见KMP算法

#include<bits/stdc++.h>
using namespace std;
void buildNext(string str, int nt[]){
    int len = str.size();
    nt[0] = -1;
    int t = nt[0], j = 0;
    while(j < len - 1){
        if(t < 0 || str[j] == str[t]){
            nt[++j] = ++t;
        }else{
            t = nt[t];
        }
    }
}
int main(){
    int nt[110];
    string str;
    cin>>str;
    buildNext(str, nt);
    int index;
    cin>>index;
    cout<<nt[index - 1] + 1<<endl;
    return 0;
}

B - 链表重排

Problem Description

给定一条单链表,将链表结点进行头尾交错重新排序,即如果一条单链表为 L1 -> L2 -> … -> L(n-1) -> Ln ,那么重新排序完的结果是 L1 -> Ln -> L2 -> L(n-1) -> L3 -> L(n-2) -> …

Input

每个输入文件中一组数据。

第一行给出结点的总个数N(0<N<10^5)和单链表的第一个结点的地址。所有结点的地址要么是一个五位正整数,要么是用-1表示的空地址NULL。然后是N行,表示N个结点,每行的格式为

Address Data Next

其中Address为结点地址(不足5位的高位用零填充至5位),Data为结点的数据域(绝对值不超过10^5的整数),Next为结点的指针域(即下一个结点的地址)。数据保证Address不等于-1。

Output

输出按题目要求重新排序后的单链表。第一行为重新排序后单链表上结点的个数、第一个结点的地址。

之后每行一个结点,输出格式与输入相同,结点输出顺序为单链表连接顺序。

Sample Input

5 11111
33333 0 44444
22222 2 33333
11111 5 22222
05689 8 -1
44444 6 05689

Sample Output

5 11111
11111 5 05689
05689 8 22222
22222 2 44444
44444 6 33333
33333 0 -1

分析:

1. 链表的长度要自己计算,不是所有的节点都会用到

2. 链表可能是空的

#include<bits/stdc++.h>
using namespace std;
const int nmax = 100010;
int data[nmax], nt[nmax], lt[nmax];
int main(){
    int n, head;
    cin>>n>>head;
    for(int i = 0; i < n; i++){
        int addr;
        cin>>addr;
        cin>>data[addr]>>nt[addr];
    }
    int len = 0;
    while(head != -1){
        lt[len++] = head;
        head = nt[head];
    }
    vector<int>ans;
    int i = 0, j = len - 1;
    while(i <= j){
        ans.push_back(lt[i++]);
        if(i < j)ans.push_back(lt[j--]);
    }
    if(ans.size() == 0){
        printf("0 -1");
        return 0;
    }
    printf("%d %05d\n", ans.size(), ans[0]);
    for(int i = 0; i < ans.size() - 1; ++i){
        printf("%05d %d %05d\n", ans[i], data[ans[i]], ans[i + 1]);
    }
    printf("%05d %d -1\n", ans.back(), data[ans.back()]);
    return 0;
}

C - 极大匹配

Problem Description

对给定的无向图G=(V,E),如果边集E’满足:(1)E’是E的子集;(2)E’中的任意两条边都没有公共顶点,那么称边集E’为图G的一个匹配(Matching)。而如果往E’中增加任意一条在E中但不在E’中的边,都会导致E’不再是图G的匹配,那么称E’为图G的一个极大匹配(Maximal Matching)。
(以上定义引自https://en.wikipedia.org/wiki/Matching_(graph_theory)

根据上面的定义,请判断一些给定的边集是否是给定的无向图的极大匹配。

Input

每个输入文件一组数据。

第一行两个整数N、M(1<=N<=1000, 0<=M<=N*(N-1)/2),表示顶点数和边数,假设所有顶点的编号为1到N。

接下来M行,每行两个正整数u、v(1<=u,v<=N, u!=v),表示一条边的两个端点编号。

然后一个正整数K(K<=10),表示查询个数。

接下来为K个查询,每个查询第一行为一个正整数L,表示待查询边集的边数,接下来L行每行两个正整数,表示一条边的两个端点编号。数据保证每个查询中相同的边只会出现一次,且所有边都在图中存在。

Output

每个查询输出一行,如果给定的边集是极大匹配,那么输出Yes;如果它是匹配但不是极大匹配,那么输出Not Maximal;如果不是匹配,那么输出Not a Matching

Sample Input

4 4
1 2
1 3
2 3
2 4
4
1
2 3
1
1 3
2
1 2
2 4
2
1 3
2 4

Sample Output

Yes
Not Maximal
Not a Matching
Yes
#include<bits/stdc++.h>
using namespace std;
const int nmax = 1010;
bool vis[nmax], G[nmax][nmax], tempG[nmax][nmax];
struct node{
    int u, v;
};
int main(){
    int n, m, K, L;
    vector<node>E;
    cin>>n>>m;
    fill(G[0], G[0] + nmax * nmax, false);
    for(int i = 0; i < m; ++i){
        int u, v;
        cin>>u>>v;
        G[u][v] = G[v][u]  =true;
        E.push_back({u, v});
    }
    cin>>K;
    for(int i  =0; i < K; ++i){
        vector<node>tempE;
        fill(vis, vis + nmax, false);
        fill(tempG[0], tempG[0] + nmax * nmax, false);
        cin>>L;
        bool flag = true;
        for(int j = 0; j < L; ++j){
            int u, v;
            cin>>u>>v;
            if(G[u][v] == false)flag = false;
            if(vis[u] == true || vis[v] == true)flag = false;
            tempG[u][v] = tempG[v][u] = true;
            tempE.push_back({u, v});
            vis[u] = vis[v] = true;
        }
        if(flag == false)printf("Not a Matching\n");
        else{
            for(int j = 0; j < E.size(); ++j){
                int u = E[j].u, v = E[j].v;
                if(tempG[u][v] == false){
                    if(vis[u] == false && vis[v] == false){
                        flag = false;
                        break;
                    }
                }
            }
            if(flag == true)printf("Yes\n");
            else printf("Not Maximal\n");
        }
    }
    return 0;
}

D - 关键路径

Problem Description

给定一个有N个顶点、M条边的有向图,顶点下标为从1到N,每条边都有边权。判断这个有向图是否是有向无环图,如果是的话,请处理K个查询,每个查询为图中的一条边,求这条边的最早发生时间和最晚发生时间。最后再输出图中的所有关键路径。

Input

每个输入文件中一组数据。

第一行为两个整数N、M,表示有向无环图的顶点数和边数(1<=N<=1000, 0<=M<=N*(N-1)),顶点编号为从1到N。

接下来M行,每行为三个正整数u、v、w(1<=u,v<=N,0<w<=20,u!=v),分别表示有向边的起点、终点、边权。数据保证不会有两条起点和终点都相同的边。

然后是一个正整数K(1<=K<=1000),表示查询个数。

接着是K行,每行为两个正整数u、v,分别表示查询边的起点和终点。数据保证查询边一定是图上存在的边。

Output

如果给出的图不是有向无环图,那么在一行里输出NO,后面的查询结果和关键路径均不需要输出;

如果给出的图是有向无环图,那么在一行里输出YES,接着输出下面的内容:

每个查询一行,输出查询边的最早发生时间和最晚发生时间;

之后一行输出一个整数:关键路径上的边权之和;

最后若干行输出所有关键路径,每行表示其中一条,格式为用->连接的顶点编号。注意,如果有两条关键路径a[1]->a[2]->…->a[k]->a[k+1]->…与b[1]->b[2]->…->b[k]->[k+1]->…,满足a[1]==b[1]、a[2]==b[2]、…、a[k]==b[k]、a[k+1]<b[k+1],那么把关键路径a优先输出。数据保证关键路径条数不超过10000条。

Sample Input 1

4 5
1 2 3
1 3 2
1 4 5
2 4 1
3 4 3
2
1 3
2 4

Sample Output 1

YES
0 0
3 4
5
1->3->4
1->4

Sample Input 2

3 3
1 2 3
2 3 1
3 2 2
2
1 2
2 3

Sample Output 2

NO

分析:

1.多个有向图

2.多起点、多汇点

3.图中存在孤立点,此时入度也为0

求关键路径时,将存关键路径上的边而非关键活动,使用邻接表而非邻接矩阵

#include<bits/stdc++.h>
using namespace std;
const int nmax = 1010;
struct node{
    int v, w;
};
vector<node>G[nmax];
vector<int>activity[nmax];
int n, m, inDeg[nmax] = {0}, inDegOrigin[nmax] = {0};
int ve[nmax], vl[nmax];
int e[nmax][nmax], l[nmax][nmax];
stack<int>topOrder;
bool topologicalSort(){
    queue<int>q;
    for(int i = 1; i <= n; ++i){
        if(inDeg[i] == 0)q.push(i);
    }
    while(!q.empty()){
        int u = q.front();
        q.pop();
        topOrder.push(u);
        for(int i = 0; i < G[u].size(); ++i){
            int v = G[u][i].v;
            inDeg[v]--;
            if(inDeg[v] == 0)q.push(v);
            ve[v] = max(ve[v], ve[u] + G[u][i].w);
        }
    }
    if(topOrder.size() == n)return true;
    else return false;
}
int criticalPath(){
    fill(ve, ve + nmax, 0);
    if(topologicalSort() == false)return -1;
    int maxLen = -1;
    for(int i = 1; i <= n; ++i){
        if(ve[i] > maxLen)maxLen = ve[i];
    }
    fill(vl, vl + nmax, maxLen);
    while(!topOrder.empty()){
        int u = topOrder.top();
        topOrder.pop();
        for(int i = 0; i < G[u].size(); ++i){
            int v = G[u][i].v;
            vl[u] = min(vl[u], vl[v] - G[u][i].w);
        }
    }
    for(int u = 1; u <= n; ++u){
        for(int i = 0; i < G[u].size(); ++i){
            int v = G[u][i].v, w = G[u][i].w;
            e[u][v] = ve[u];
            l[u][v] = vl[v] - w;
            if(e[u][v] == l[u][v])activity[u].push_back(v);
        }
    }
    return maxLen;
}
vector<int>path;
void dfs(int u){
    if(activity[u].size() == 0){
        path.push_back(u);
        int flag = 0;
        for(int x : path){
            if(flag == 1)printf("->");
            printf("%d", x);
            flag = 1;
        }
        printf("\n");
        path.pop_back();
        return;
    }
    path.push_back(u);
    sort(activity[u].begin(), activity[u].end());
    for(int x : activity[u]){
        dfs(x);
    }
    path.pop_back();
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i = 0; i < m; ++i){
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        G[u].push_back({v, w});
        inDeg[v]++;
        inDegOrigin[v]++;
    }
    int maxLen = criticalPath();
    if(maxLen == -1)printf("NO\n");
    else{
        printf("YES\n");
        int k;
        scanf("%d", &k);
        for(int i = 0; i < k; ++i){
            int u, v;
            scanf("%d%d", &u, &v);
            printf("%d %d\n", e[u][v], l[u][v]);
        }
        printf("%d\n", maxLen);
        for(int i =1; i <= n; ++i){
            if(inDegOrigin[i] == 0 && activity[i].size() != 0)dfs(i);
        }
    }
    return 0;
}

标签:晴神,nmax,false,int,Sample,++,2019,Input,模拟
来源: https://blog.csdn.net/qq_39011762/article/details/88410321

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有