ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

golang timer定时器

2022-03-19 18:03:18  阅读:225  来源: 互联网

标签:定时器 Stop Timer golang timer func time Ticker


Go语言的定时器实质是单向通道,time.Timer结构体类型中有一个time.Time类型的单向chan,源码(src/time/time.go)如下

type Timer struct {
C <-chan Time
r runtimeTimer
 
初始化 Timer 方法为NewTimer

package main

import (
    "fmt"

    "time"
)

func main() {

    t := time.NewTimer(time.Second * 2)
    defer t.Stop()
    for {
        <-t.C
        fmt.Println("timer running...")
        // 需要重置Reset 使 t 重新开始计时
        t.Reset(time.Second * 2)
    }
}

 

输出
timer running…
timer running…
timer running…
timer running…
这里使用NewTimer定时器需要t.Reset重置计数时间才能接着执行。如果注释 t.Reset(time.Second * 2)会导致通道堵塞,报fatal error: all goroutines are asleep - deadlock!错误。

同时需要注意 defer t.Stop()在这里并不会停止定时器。这是因为Stop会停止Timer,停止后,Timer不会再被发送,但是Stop不会关闭通道,防止读取通道发生错误。

t := time.NewTimer(time.Second * 2)

ch := make(chan bool)
go func(t *time.Timer) {
    defer t.Stop()
    for {
        select {
        case <-t.C:
            fmt.Println("timer running....")
            // 需要重置Reset 使 t 重新开始计时
            t.Reset(time.Second * 2)
        case stop := <-ch:
            if stop {
                fmt.Println("timer Stop")
                return
            }
        }
    }
}(t)
time.Sleep(10 * time.Second)
ch <- true
close(ch)
time.Sleep(1 * time.Second)

 

 

 

定时器(NewTicker)

 

package main

import (
	"fmt"
	"time"
)

func main() {
		t := time.NewTicker(time.Second*2)
		defer t.Stop()
		for {
			<- t.C
			fmt.Println("Ticker running...")
		}		
}

  

time.After
time.After()表示多长时间长的时候后返回一条time.Time类型的通道消息。但是在取出channel内容之前不阻塞,后续程序可以继续执行。

先看源码(src/time/sleep.go)

func After(d Duration) <-chan Time {
   return NewTimer(d).C
}
 
通过源码我们发现它返回的是一个NewTimer(d).C,其底层是用NewTimer实现的,所以如果考虑到效率低,可以直接自己调用NewTimer。

package main

import (
   "fmt"
   "time"
)

func main() {
   t := time.After(time.Second * 3)
   fmt.Printf("t type=%T\n", t)
   //阻塞3秒
   fmt.Println("t=", <-t)
}

基于time.After()特性可以配合select实现计时器

 

package main

import (
   "fmt"
   "time"
)

func main() {
   ch1 := make(chan int, 1)
   ch1 <- 1
   for {
      select {
      case e1 := <-ch1:
         //如果ch1通道成功读取数据,则执行该case处理语句
         fmt.Printf("1th case is selected. e1=%v\n", e1)
      case <-time.After(time.Second*2):
         fmt.Println("Timed out")
      }
   }

}

select语句阻塞等待最先返回数据的channel`,如ch1通道成功读取数据,则先输出1th case is selected. e1=1,之后每隔2s输出 Timed out。

 


time.Timer

结构

首先我们看Timer的结构定义:

type Timer struct {
    C <-chan Time
    r runtimeTimer
}

其中有一个C的只读channel,还有一个runtimeTimer类型的结构体,再看一下这个结构的具体结构:

type runtimeTimer struct {
    tb uintptr
    i  int

    when   int64
    period int64
    f      func(interface{}, uintptr) // NOTE: must not be closure
    arg    interface{}
    seq    uintptr
}

在使用定时器Timer的时候都是通过 NewTimerAfterFunc 函数来获取。
先来看一下NewTimer的实现:

func NewTimer(d Duration) *Timer {
    c := make(chan Time, 1)
    t := &Timer{
        C: c,
        r: runtimeTimer{
            when: when(d), //表示达到时间段d时候调用f
            f:    sendTime,  // f表示一个函数调用,这里的sendTime表示d时间到达时向Timer.C发送当前的时间
            arg:  c,  // arg表示在调用f的时候把参数arg传递给f,c就是用来接受sendTime发送时间的
        },
    }
    startTimer(&t.r)
    return t
}

定时器的具体实现逻辑,都在 runtime 中的 time.go 中,它的实现,没有采用经典 Unix 间隔定时器 setitimer 系统调用,也没有 采用 POSIX间隔式定时器(相关系统调用:timer_createtimer_settimetimer_delete),而是通过四叉树堆(heep)实现的(runtimeTimer 结构中的i字段,表示在堆中的索引)。通过构建一个最小堆,保证最快拿到到期了的定时器执行。定时器的执行,在专门的 goroutine 中进行的:go timerproc()。有兴趣的同学,可以阅读 runtime/time.go 的源码。

其他方法

 

func After(d Duration) <-chan Time { return NewTimer(d).C }

 

根据源码可以看到After直接是返回了Timerchannel,这种就可以做超时处理。
比如我们有这样一个需求:我们写了一个爬虫,爬虫在HTTP GET 一个网页的时候可能因为网络的原因就一只等待着,这时候就需要做超时处理,比如只请求五秒,五秒以后直接丢掉不请求这个网页了,或者重新发起请求。

go Get("http://baidu.com/")
 
func Get(url string) {
    response := make(chan string)
    response = http.Request(url)

    select {
    case html :=<- response:
        println(html)
    case <-time.After(time.Second * 5):
        println("超时处理")
    }
}

可以从代码中体现出来,如果五秒到了,网页的请求还没有下来就是执行超时处理,因为Timer的内部会是帮你在你设置的时间长度后自动向Timer.C中写入当前时间。

其实也可以写成这样:

func Get(url string) {
    response := make(chan string)
    response = http.Request(url)
    timeOut := time.NewTimer(time.Second * 3)
    select {
    case html :=<- response:
        println(html)
    case <-timeOut.C:
        println("超时处理")
    }
}
  • func (t *Timer) Reset(d Duration) bool //强制的修改timer中规定的时间,Reset会先调用 stopTimer 再调用 startTimer,类似于废弃之前的定时器,重新启动一个定时器,ResetTimer还未触发时返回true;触发了或Stop了,返回false
  • func (t *Timer) Stop() bool // 如果定时器还未触发,Stop 会将其移除,并返回 true;否则返回 false;后续再对该 Timer 调用 Stop,直接返回 false

比如我写了了一个简单的事例:每两秒给你的女票发送一个"I Love You!"

// 其中协程之间的控制做的不太好,可以使用channel或者golang中的context来控制
package main

import (
    "time"
    "fmt"
    )

func main() {

    go Love() // 起一个协程去执行定时任务

    stop := 0
    for {
        fmt.Scan(&stop)
        if stop == 1{
            break
        }
    }
}
func Love() {
    timer := time.NewTimer(2 * time.Second)  // 新建一个Timer

    for {
        select {
        case <-timer.C:
            fmt.Println("I Love You!")
            timer.Reset(2 * time.Second)  // 上一个when执行完毕重新设置
        }
    }
    return
}
  • func AfterFunc(d Duration, f func()) *Timer // 在时间d后自动执行函数f
func main() {
    f := func(){fmt.Println("I Love You!")}
    time.AfterFunc(time.Second*2, f)
    time.Sleep(time.Second * 4)

}

自动在2秒后打印 "I Love You!"

time.Ticker

如果学会了Timer那么Ticker就很简单了,TimerTicker结构体的结构是一样的,举一反三,其实Ticker就是一个重复版本的Timer,它会重复的在时间d后向Ticker中写数据

  • func NewTicker(d Duration) *Ticker // 新建一个Ticker
  • func (t *Ticker) Stop() // 停止Ticker
  • func Tick(d Duration) <-chan Time // Ticker.C 的封装

TickerTimer 类似,区别是:Ticker 中的runtimeTimer字段的 period 字段会赋值为 NewTicker(d Duration) 中的d,表示每间隔d纳秒,定时器就会触发一次。

除非程序终止前定时器一直需要触发,否则,不需要时应该调用 Ticker.Stop 来释放相关资源。

如果程序终止前需要定时器一直触发,可以使用更简单方便的 time.Tick 函数,因为 Ticker 实例隐藏起来了,因此,该函数启动的定时器无法停止。

那么这样我们就可以把发"I Love You!"的例子写得简单一些。

func main() {
    //定义一个ticker
    ticker := time.NewTicker(time.Millisecond * 500)
    //Ticker触发
    go func() {
        for t := range ticker.C {
            fmt.Println(t)
            fmt.Println("I Love You!")
        }
    }()

    time.Sleep(time.Second * 18)
    //停止ticker
    ticker.Stop()
}

定时器的实际应用

在实际开发中,定时器用的较多的会是 Timer,如模拟超时,而需要类似 Tiker 的功能时,可以使用实现了 cron spec 的库 cron


 

 首先time.Timer和 time.NewTicker属于定时器,二者的区别在于

timer : 到固定时间后会执行一次,请注意是一次,而不是多次。但是可以通过reset来实现每隔固定时间段执行

ticker : 每隔固定时间都会触发,多次执行. 具体请查看下面示例1

time.After : 用于实时超时控制,常见主要和select channel结合使用.查看代码示例2

 

注意点: 

没有关闭定时器的执行。定时器未关闭!!!!大家会想到stop ,使用stop注意是在协程内还是携程外,以及使用的场景业务

协程退出时需要关闭,避免资源l浪费,使用defer ticker.Stop() 

package main
 
import (
    "fmt"
    "time"
)
 
//定时器的stop
func main() {
 
    // 协程内的定时器 stop  在协程结束时,关闭默认资源定时器,channel 具体根据业务来看
    go func() {
        ticker := time.NewTicker(5 * time.Second)
        // 此处 可以简化为defer ticker.Stop()
        defer func() {
            fmt.Println("stop")
            ticker.Stop()
        }()
    
       select {
       case <- ticker.C:
            fmt.Println("ticker..." )
        }
    }()
 
    // 停止ticker
    stopChan := make(chan bool)
    ticker := time.NewTicker(5 * time.Second)
    go func(ticker *time.Ticker) {
        defer func() {
            ticker.Stop()
            fmt.Println("Ticker2 stop")
        }()
        for {
            select {
            case s := <-ticker.C:
                fmt.Println("Ticker2....",s)
            case stop := <-stopChan:
                if stop {
                    fmt.Println("Stop")
                    return
                }
            }
        }
 
    }(ticker)
    // 此处的stop 并不会结束上面协程,也不会打印出 Ticker2 stop  只能借助stopChan,让协程结束时关闭ticker或者协程出现panic时执行defer
    //ticker.Stop()
    stopChan <- true
    close(stopChan)
    
    time.Sleep(time.Second * 10)
    fmt.Println("main end")
    
}

 

 

timer正确的stop 问题

 使用 Golang Timer 的正确方式
https://www.codercto.com/a/34856.html

一、标准 Timer 的问题

以下讨论只针对由 NewTimer 创建的 Timer,因为这种 Timer 会使用 channel 来传递到期事件,而正确操作 channel 并非易事。

Timer.Stop

按照 Timer.Stop 文档 的说法,每次调用 Stop 后需要判断返回值,如果返回 false(表示 Stop 失败,Timer 已经在 Stop 前到期)则需要排掉(drain)channel 中的事件:

if !t.Stop() {
	<-t.C
}

但是如果之前程序已经从 channel 中接收过事件,那么上述 <-t.C 就会发生阻塞。可能的解决办法是借助 select 进行 非阻塞 排放(draining):

if !t.Stop() {
	select {
	case <-t.C: // try to drain the channel
	default:
	}
}

但是因为 channel 的发送和接收发生在不同的 goroutine,所以 存在竞争条件 (race condition),最终可能导致 channel 中的事件未被排掉。

以下就是一种有问题的场景,按时间先后顺序发生:

select...case <-t.C

Timer.Reset

按照 Timer.Reset 文档 的说法,要正确地 Reset Timer,首先需要正确地 Stop Timer。因此 Reset 的问题跟 Stop 基本相同。

二、使用 Timer 的正确方式

参考 Russ Cox 的回复( 这里 和 这里 ),目前 Timer 唯一合理的使用方式是:

  • 程序始终在同一个 goroutine 中进行 Timer 的 Stop、Reset 和 receive/drain channel 操作
  • 程序需要维护一个状态变量,用于记录它是否已经从 channel 中接收过事件,进而作为 Stop 中 draining 操作的判断依据

如果每次使用 Timer 都要按照上述方式来处理,无疑是一件很费神的事。为此,我专门写了一个 Go 库 goodtimer 来解决标准 Timer 的问题。懒是一种美德 :-)



本文链接:https://www.codercto.com/a/34856.html

 

 

 

https://www.jianshu.com/p/372f714c2cf3

https://studygolang.com/articles/9289

链接:https://www.jianshu.com/p/2b4686b8de4a

 

http://russellluo.com/2018/09/the-correct-way-to-use-timer-in-golang.html

参考;

https://blog.csdn.net/guyan0319/article/details/90450958

 

标签:定时器,Stop,Timer,golang,timer,func,time,Ticker
来源: https://www.cnblogs.com/youxin/p/16027304.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有