ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

深度学习:多层感知机和异或问题(Pytorch实现)

2022-02-15 10:04:49  阅读:201  来源: 互联网

标签:loss star torch 异或 textbf 感知机 Pytorch grad


感知机模型

假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \mathcal{X}\)表示实例的特征向量,对应于输入空间的点;输出\(y\in \mathcal{Y}\)表示实例的类别。有输入空间到输出空间的如下函数:

\[\begin{aligned} f(x)= g(\textbf{w}\cdot \textbf{x}+b) \end{aligned} \tag{1} \]

称为感知机,其中\(\textbf{w}\)和\(b\)为感知机模型参数,\(\textbf{w}\in \textbf{R}^n\)叫做权值(weight)或权值向量(weight vector),
\(b \in \textbf{R}\)叫做偏置(bias),\(\textbf{w}\cdot \textbf{x}\)叫做\(\textbf{w}\)和\(\textbf{x}\)的内积。\(g\)是表示激活函数。理想中的中的激活函数是“阶跃函数”,即

\[\begin{aligned} \mathrm{sgn}(x)=\left\{ \begin{aligned} +1, \quad x \geqslant 0\\ 0, \quad x<0 \end{aligned} \right . \end{aligned} \tag{2} \]

它将输入值映射为输出值0或1,显示“1”对应于神经元兴奋,“0”对应于神经元抑制。然而,阶跃函数具有不连续、不光滑等不太好的性质(
函数不连续时无法求梯度。在Pytorch/Tensorflow中体现为梯度将一直保持初值\(0\),你可以试一试)
,因而实际常用下面这个\(\text{Sigmoid}\)函数做为激活函数,它把可能在较大范围内变化的输入值挤压到\((0,1)\)输出值范围内,因而有时也被称为“挤压函数”(squashing function)。

\[\begin{aligned} \mathrm{sigmoid}(x)=\frac{1}{1+e^{-x}} \end{aligned} \]

感知机是一种线性分类模型,属于判别模型。感知机模型的假设空间是定义在特征空间的所有线性分类模型(linear classification model)
或线性分类器(linear classifier),即函数集合\(\{ f|f(\textbf{x})=\textbf{w}\cdot \textbf{x}+b\}\)。

异或问题

我们将感知机用于学习一个简单的\(\text{XOR}\)函数。我们将其建模为二分类问题,这里我们采用上一章讲过的对数损失函数,并使用梯度下降法进行训练。

import numpy as np
import random
import torch
# batch_size表示单批次用于参数估计的样本个数
# y_pred大小为(batch_size, )
# y大小为(batch_size, ),为类别型变量
def log_loss(y_pred, y):
    return -(torch.mul(y, torch.log(y_pred)) + torch.mul(1-y, torch.log(1-y_pred))).sum()/y_pred.shape[0]

# 前向函数
def perceptron_f(X, w, b): 
    z = torch.add(torch.matmul(X, w), b)
    return 1/(1+torch.exp(-z))

# 之前实现的梯度下降法,做了一些小修改
def gradient_descent(X, w, b, y, n_iter, eta, loss_func, f):
    for i in range(1, n_iter+1):
        y_pred = f(X, w, b)
        loss_v = loss_func(y_pred, y)
        loss_v.backward() 
        with torch.no_grad(): 
            w -= eta*w.grad
            b -= eta*b.grad
        w.grad.zero_()
        b.grad.zero_()
    w_star = w.detach()
    b_star = b.detach()
    return w_star, b_star

# 本模型按照二分类架构设计
def Perceptron(X, y, n_iter=200, hidden_size=2, eta=0.001, loss_func=log_loss, optimizer=gradient_descent):
    # 初始化模型参数
    # 注意,各权重初始化不能相同
    w = torch.tensor(np.random.random((hidden_size, )), requires_grad=True)
    b = torch.tensor(np.random.random((1)), requires_grad=True)
    X, y = torch.tensor(X), torch.tensor(y)
    # 调用梯度下降法对函数进行优化
    # 这里采用单次迭代对所有样本进行估计,后面我们会介绍小批量法
    w_star, b_star = optimizer(X, w, b, y, n_iter, eta, log_loss, perceptron_f)
    return w_star, b_star

if __name__ == '__main__':
    X = np.array([
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1]
    ], dtype=np.float64)
    # 标签向量
    y = np.array([0, 1, 1, 0], dtype=np.int64)
    # 迭代次数
    n_iter = 2000
    # 学习率
    eta = 2 #因为每轮所求的梯度太小,这里增大学习率以补偿
    w, b = Perceptron(X, y, n_iter, hidden_size, eta, log_loss, gradient_descent)
    # 代入
    print(perceptron_f(torch.tensor(X), w, b))            

我们数据代入所学的的模型,我们发现模型的输出结果如下。我们可以发现\(4\)个样本的预测值都是\(0.5\),不能拟合原本给定的\(4\)个样本点。如果你有兴趣可以将\(\bm{w}\)的梯度进行打印,可以发现\(\bm{w}\)的梯度来回震荡,这也就导致了权重\(\bm{w}\)无法稳定,最终导致模型最终无法收敛。

    tensor([0.5000, 0.5000, 0.5000, 0.5000], dtype=torch.float64)

看来,普通的感知机无法解决亦或问题。那这是为什么呢?我们前面说了,感知机的模型是一个线性分类模型,只能处理线性可分问题(你可以试试让其学习与、或、非等线性可分问题)。可以证明,若两类模式是线性可分的,即存在一个线性超平面能将他们分开,如下图中的\((a)-(c)\)所示,则感知机的学习过程一定会收敛(converge)而求得适当的权向量\(\bm{w}\);否则感知机学习过程将会发生振荡(fluctuation),\(\bm{w}\)难以稳定下来,不能求得合适解。亦或问题就是一种非线性可分问题。如图\((d)\)所示,我们无法用线性超平面去将正负样本分隔开。

电影爱好者的评分情况示意图

人工智能奠基人之一的Marvin Minsky与1969年出版了《感知机》一书,书中指出,单层神经网络无法解决非线性问题,而多层神经网络的训练算法尚看不到希望,这个论断直接使神经网络研究进入了“冰河期”,这就是神经网络的第一次低谷。直到后来BP算法的走红,才掀起了神经网络的第二次高潮。

多层感知机

单层的感知机无法解决亦或问题,那多层的呢?我们接下来考虑一个多层神经网络,但相比前面的感知机多了一个隐藏层\(\bm{h}\)。设该网络第一层的权重矩阵为\(\textbf{W}\)(表示\(\bm{x}\)到\(\bm{h}\)的映射),第二层的权重向量为\(\textbf{w}\)(表示\(\textbf{h}\)到中间变量\(z\))的映射,然后通过\(\text{Sigmoid}\)函数将\(z\)其映射到\(y\)这样神经网络包括两个嵌套在一起的函数\(\textbf{h} = f^{(1)}(\textbf{x};\textbf{W})\)和\(y=f^{(2)}(\textbf{h}; \textbf{w})\)。注意:此处为了简化起见,两层的偏置已经合并到权重\(W\),\(w\)
中去了。这样整个神经网络可以表示成一个复合函数\(f(\textbf{x};\textbf{W}, \textbf{w})=f^{(2)}f^{(1)}(x)\)

\(f^{(1)}\)应该采用那种函数?如果我们仍然采用线性函数,那么前馈网络作为一个整体仍然是线性分类器。故我们要用非线性函数,而这可以通过仿射变换后加一个非线性变换实现
(不知道仿射变换的可以回顾线性代数),而这个非线性变换可以用我们在\(f^{(2)}\)中所包括的激活函数实现。

还有一个工程上需要注意的是,如果我们有多层网络,那么我们不能将所有网络层权重都初始化为相同的值,这样会造成所有网络层权重梯度变化方向一样,最终像单层感知机一样无法学习。我们可以将所有网络层权重初始化为\([0, 1)\)之间的随机数(注意,神经网络的输入及权重一般初始时都是归一化到\([0, 1)\)之间了的)。后面我们会介绍更科学的\(\text{golort}\)权重初始化法。对于偏置,初始化为随机数或是常量(如\(0\)或\(1\))不影响,我们这里仍然采取将其初始化为\([0, 1)\)之间的随机数。

我们在原本的网络中多加一层。

import numpy as np
import random
import torch
# batch_size表示单批次用于参数估计的样本个数
# y_pred大小为(batch_size, )
# y大小为(batch_size, ),为类别型变量
def log_loss(y_pred, y):
    return -(torch.mul(y, torch.log(y_pred)) + torch.mul(1-y, torch.log(1-y_pred))).sum()/y_pred.shape[0]

# 前向函数
def perceptron_f(X, W, w, b1, b2): 
    z1 = torch.add(torch.matmul(X, W), b1) 
    h = 1/(1+torch.exp(-z1)) 
    z2 = torch.add(torch.matmul(h, w), b2)
    return 1/(1+torch.exp(-z2))

# 之前实现的梯度下降法,做了一些小修改
def gradient_descent(X, W, b1, w, b2, y, n_iter, eta, loss_func, f):
    for i in range(1, n_iter+1):
        y_pred = f(X, W, w, b1, b2)
        loss_v = loss_func(y_pred, y)
        loss_v.backward() 
        with torch.no_grad(): 
            W -= eta*W.grad
            w -= eta*w.grad
            b1 -= eta*b1.grad
            b2 -= eta*b2.grad
        W.grad.zero_()  
        w.grad.zero_()
        b1.grad.zero_()
        b2.grad.zero_()
    W_star = W.detach()
    w_star = w.detach()
    b1_star = b1.detach()
    b2_star = b2.detach()
    return W_star, w_star, b1_star, b2_star

# 本模型按照二分类架构设计
def Perceptron(X, y, n_iter=200, hidden_size=2, eta=0.001, loss_func=log_loss, optimizer=gradient_descent):
    # 初始化模型参数
    # 注意,各权重初始化不能相同
    W = torch.tensor(np.random.random((X.shape[1], hidden_size)), requires_grad=True)
    b1 = torch.tensor(np.random.random((1)), requires_grad=True)
    w = torch.tensor(np.random.random((hidden_size, )), requires_grad=True)
    b2 = torch.tensor(np.random.random((1)), requires_grad=True)
    X, y = torch.tensor(X), torch.tensor(y)
    # 调用梯度下降法对函数进行优化
    # 这里采用单次迭代对所有样本进行估计,后面我们会介绍小批量法
    W_star, w_star, b1_star, b2_star = optimizer(X, W, b1, w, b2, y, n_iter, eta, log_loss, perceptron_f)
    return W_star, w_star, b1_star, b2_star

if __name__ == '__main__':
    X = np.array([
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1]
    ], dtype=np.float64)
    # 标签向量
    y = np.array([0, 1, 1, 0], dtype=np.int64)
    # 迭代次数
    n_iter = 2000
    # 学习率
    eta = 2 #因为每轮所求的梯度太小,这里增大学习率以补偿
    # 隐藏层神经元个数
    hidden_size = 2
    W, w, b1, b2 = Perceptron(X, y, n_iter, hidden_size, eta, log_loss, gradient_descent)
    # 代入
    print(perceptron_f(torch.tensor(X), W, w, b1, b2))

你可以将原始样本点带入学得的模型,可以发现拟合结果如下所示,总体效果不错(因为数值精度问题,一般不会完全拟合)

    tensor([0.0036, 0.9973, 0.9973, 0.0030], dtype=torch.float64)

更一般地,常见的神经网络是多层的层级结构,每层神经元与下一层神经元全互联,神经元之间不存在同层连接,也不存在跨层连接,这样的神经网络结构通常称为“多层前馈神经网络”(multi-layer feedforward neural)或多层感知机(multi-layer perceptron,MLP)。

标签:loss,star,torch,异或,textbf,感知机,Pytorch,grad
来源: https://www.cnblogs.com/orion-orion/p/15895136.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有