ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【自然语言处理三】SequenceToSequence 模型

2021-12-31 15:06:11  阅读:205  来源: 互联网

标签:index target 模型 decoder encoder char input SequenceToSequence 自然语言


1.简介

Seq2Seq技术,全称Sequence to Sequence,该技术突破了传统的固定大小输入问题框架,开通了将经典深度神经网络模型(DNNs)运用于在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上,并被证实在英语-法语翻译、英语-德语翻译以及人机短问快答的应用中有着不俗的表现。

2.核心思想

Seq2Seq解决问题的主要思路是通过深度神经网络模型(常用的是LSTM,长短记忆网络,一种循环神经网络)http://dataxujing.coding.me/深度学习之RNN/。将一个作为输入的序列映射为一个作为输出的序列,这一过程由编码(Encoder)输入与解码(Decoder)输出两个环节组成, 前者负责把序列编码成一个固定长度的向量,这个向量作为输入传给后者,输出可变长度的向量。

在这里插入图片描述

3.代码实现

(1)训练代码

import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras import layers
batch_size=64
epochs=30
latent_dim=128
num_samples=10000
data_path='../dataset/fra-eng/fra.txt'


#prepare data
input_texts=[]
target_texts=[]
input_characters=set()
target_characters=set()

with open(data_path, 'r', encoding='utf-8') as f:
    lines=f.read().split('\n')

for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text, _ = line.split("\t")
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = "\t" + target_text + "\n"
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters=sorted(list(input_characters))
target_characters=sorted(list(target_characters))
num_encoder_tokens=len(input_characters)
num_decoder_tokens=len(target_characters)
max_encoder_seq_length=max([len(txt) for txt in input_texts])
max_decoder_seq_length=max([len(txt) for txt in target_texts])

input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])


# print(input_token_index)
# print(target_token_index)

encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype="float32"
)
decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)
decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype="float32"
)
#encoder输入是一句话,decoder输出也是一句话,即predict输出的outputs是一句话。
  
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
    for t, char in enumerate(input_text):
        encoder_input_data[i, t, input_token_index[char]] = 1.0
    encoder_input_data[i, t + 1:, input_token_index[" "]] = 1.0 #句子补齐
    
    for t, char in enumerate(target_text):
        # decoder_target_data is ahead of decoder_input_data by one timestep
        decoder_input_data[i, t, target_token_index[char]] = 1.0
        if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.0
    decoder_input_data[i, t + 1:, target_token_index[" "]] = 1.0 #句子补齐
    decoder_target_data[i, t:, target_token_index[" "]] = 1.0  # 句子补齐
    

# build model
# Define an input sequence and process it.
encoder_inputs = keras.Input(shape=(None, num_encoder_tokens))
print('in',encoder_inputs.shape)
encoder = layers.LSTM(latent_dim,return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)

#这里如果return_sequences是true,那么输出的会是矩阵.默认是false,输出是一个向量hn,即只记录最后一个向量。后面会遇到attention模型,输出是一个矩阵,原因就是需要记住之前的所有状态h1,h2...hn,并和之前所有状态h1,h2...hn作对比。
print(encoder_outputs.shape)


# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = keras.Input(shape=(None, num_decoder_tokens))

# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = layers.LSTM(
    latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(
    decoder_inputs, initial_state=encoder_states)
print(decoder_outputs.shape)    
decoder_dense = layers.Dense(num_decoder_tokens, activation="softmax")
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)


# train 
model.compile(
    optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]
)

model.fit(
    [encoder_input_data, decoder_input_data],
    decoder_target_data,
    batch_size=batch_size,
    epochs=epochs,
    validation_split=0.2,
)
# Save model
model.save("s2s")

(2)预测代码

model = keras.models.load_model("s2s")

model.summary()

encoder_inputs = model.input[0]  # input_1

encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1


encoder_states = [state_h_enc, state_c_enc]
#这个地方model的输出是encoder_states,与下面对应。decoder只需要接受一个来自encoder的状态就好。
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]  # input_2

decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3")
decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4")

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]

decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]

decoder_outputs = decoder_dense(decoder_outputs)

# print('decoder_outputs', decoder_outputs.shape)

decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char)
                                for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char)
                                 for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0
    
    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict(
            [target_seq] + states_value)  # 此处的意思是将两个list(target_seq与states_value)合并
        # print('target seq',[target_seq])    
        # print('states value:',states_value)    
        # print('output_tokens', output_tokens.shape)
        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # just for test
        # target_seq = np.zeros((1, len(decoded_sentence), num_decoder_tokens))
        # for t, char in enumerate(decoded_sentence):
        #     target_seq[0,t,target_token_index[char]]=1.0    

        # Update states
        states_value = [h, c]
    return decoded_sentence

for seq_index in range(40):
    # Take one sequence (part of the training set)
    # for trying out decoding.
    input_seq = encoder_input_data[seq_index: seq_index + 1]
    decoded_sentence = decode_sequence(input_seq)
    print("-")
    print("Input sentence:", input_texts[seq_index])
    print("Decoded sentence:", decoded_sentence)

标签:index,target,模型,decoder,encoder,char,input,SequenceToSequence,自然语言
来源: https://blog.csdn.net/moo611/article/details/122234843

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有