ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【RL-Notes】Constraint Decoupling by Constraint Relaxiation

2021-12-10 14:31:44  阅读:198  来源: 互联网

标签:xi bar Constraint Relaxiation sum 1i xki tilde RL


Navigator

Example

Constraint Relaxiation, whereby the constraint set is replaced by another constraint set that does not involve coupling.

Multiarmed bandit problem, involves n projects of which only one can be worked on at any time period. Each project i is characterized at time k by its state x k i x_k^i xki​. If project i is worked on at time k, one receives an expected reward R i ( x k i ) R^i(x_k^i) Ri(xki​), and the state x k i x_k^i xki​ evolves according to the equation:
x k + 1 i = f i ( x k i , w k i ) x_{k+1}^i=f^i(x_k^i, w_k^i) xk+1i​=fi(xki​,wki​)
where w k i w_k^i wki​ is a random disturbance with probability distribution depending on x k i x_k^i xki​ but not on prior disturbances. If project i is not worked on, its state changes according to
x k + 1 i = f ˉ i ( x k i , w ˉ k i ) x_{k+1}^i=\bar{f}^i(x_k^i, \bar{w}_k^i) xk+1i​=fˉ​i(xki​,wˉki​)

In particular, suppose that the optimal reward function J k ∗ ( x 1 , … , x n ) J_k^*(x^1, \dots, x^n) Jk∗​(x1,…,xn) is approximated by a separable function of the form ∑ i = 1 n J ~ k i ( x i ) \sum_{i=1}^n \tilde{J}_k^i(x^i) ∑i=1n​J~ki​(xi), where each J ~ k i \tilde{J}_k^i J~ki​ is a function that quantifies the contribution of the i i ith project to the total reward. The corresponding one-step lookhead policy selects at time k k k the project i i i that maximizes:
R i ( x i ) = ∑ j ≠ i R ˉ j ( x j ) + E { J ~ k + 1 i ( f i ( x i , w i ) ) } + ∑ j ≠ i E { J k + 1 j ( x j , w ˉ j ) } R^i(x^i)=\sum_{j\neq i}\bar{R}^j(x^j)+\mathbb{E}\{\tilde{J}_{k+1}^i(f^i(x^i, w^i))\}+\sum_{j\neq i}\mathbb{E}\{J_{k+1}^j(x^j, \bar{w}^j)\} Ri(xi)=j​=i∑​Rˉj(xj)+E{J~k+1i​(fi(xi,wi))}+j​=i∑​E{Jk+1j​(xj,wˉj)}
which can also be written as:
R i ( x i ) − R ˉ i ( x i ) + E { J ~ k + 1 i ( f i ( x i , w i ) ) − J ~ k + 1 i ( f ˉ i ( x j , w ˉ j ) ) } + ∑ j = 1 n { R ˉ j ( x j ) + E { J ~ k + 1 j ( f ˉ j ( x j , w ˉ j ) ) } } R^i(x^i)-\bar{R}^i(x^i)+\mathbb{E}\{\tilde{J}_{k+1}^i(f^i(x^i, w^i))-\tilde{J}_{k+1}^i(\bar{f}^i(x^j, \bar{w}^j))\}+\sum_{j=1}^n\{\bar{R}^j(x^j)+\mathbb{E}\{\tilde{J}^j_{k+1}(\bar{f}^j(x^j, \bar{w}^j))\}\} Ri(xi)−Rˉi(xi)+E{J~k+1i​(fi(xi,wi))−J~k+1i​(fˉ​i(xj,wˉj))}+j=1∑n​{Rˉj(xj)+E{J~k+1j​(fˉ​j(xj,wˉj))}}
Noting that the last term in the above expression does not depend on i.

An alternative possibility is to use a separable parametric approximation of the form
∑ i = 1 n J ~ k + 1 i ( x k + 1 i , r k + 1 i ) \sum_{i=1}^n\tilde{J}_{k+1}^i(x_{k+1}^i, r_{k+1}^i) i=1∑n​J~k+1i​(xk+1i​,rk+1i​)
where r k + 1 i r_{k+1}^i rk+1i​ are vectors of ‘tunnable’ parameters. The values of r k + 1 i r_{k+1}^i rk+1i​ can be obtained by some training algorithm.

Reference

Reinforcement Learning and Optimal Control

标签:xi,bar,Constraint,Relaxiation,sum,1i,xki,tilde,RL
来源: https://blog.csdn.net/qq_18822147/article/details/121847481

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有