ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

2476218

2021-10-21 17:04:26  阅读:164  来源: 互联网

标签:state self 2476218 paddle step env size


import gym, os
from itertools import count
import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.distribution import Categorical

print(paddle.__version__)

2.0.2
device = paddle.get_device()
env = gym.make("CartPole-v0")  ### 或者 env = gym.make("CartPole-v0").unwrapped 开启无锁定环境训练

state_size = env.observation_space.shape[0]
action_size = env.action_space.n
lr = 0.001

class Actor(nn.Layer):
    def __init__(self, state_size, action_size):
        super(Actor, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.linear1 = nn.Linear(self.state_size, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, self.action_size)

    def forward(self, state):
        output = F.relu(self.linear1(state))
        output = F.relu(self.linear2(output))
        output = self.linear3(output)
        distribution = Categorical(F.softmax(output, axis=-1))
        return distribution


class Critic(nn.Layer):
    def __init__(self, state_size, action_size):
        super(Critic, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.linear1 = nn.Linear(self.state_size, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, 1)

    def forward(self, state):
        output = F.relu(self.linear1(state))
        output = F.relu(self.linear2(output))
        value = self.linear3(output)
        return value

def compute_returns(next_value, rewards, masks, gamma=0.99):
    R = next_value
    returns = []
    for step in reversed(range(len(rewards))):
        R = rewards[step] + gamma * R * masks[step]
        returns.insert(0, R)
    return returns


def trainIters(actor, critic, n_iters):
    optimizerA = optim.Adam(lr, parameters=actor.parameters())
    optimizerC = optim.Adam(lr, parameters=critic.parameters())
    for iter in range(n_iters):
        state = env.reset()
        log_probs = []
        values = []
        rewards = []
        masks = []
        entropy = 0
        env.reset()

        for i in count():
            # env.render()
            state = paddle.to_tensor(state,dtype="float32",place=device)
            dist, value = actor(state), critic(state)

            action = dist.sample([1])
            next_state, reward, done, _ = env.step(action.cpu().squeeze(0).numpy()) 

            log_prob = dist.log_prob(action);
            # entropy += dist.entropy().mean()

            log_probs.append(log_prob)
            values.append(value)
            rewards.append(paddle.to_tensor([reward], dtype="float32", place=device))
            masks.append(paddle.to_tensor([1-done], dtype="float32", place=device))

            state = next_state

            if done:
                if iter % 10 == 0:
                    print('Iteration: {}, Score: {}'.format(iter, i))
                break


        next_state = paddle.to_tensor(next_state, dtype="float32", place=device)
        next_value = critic(next_state)
        returns = compute_returns(next_value, rewards, masks)

        log_probs = paddle.concat(log_probs)
        returns = paddle.concat(returns).detach()
        values = paddle.concat(values)

        advantage = returns - values

        actor_loss = -(log_probs * advantage.detach()).mean()
        critic_loss = advantage.pow(2).mean()

        optimizerA.clear_grad()
        optimizerC.clear_grad()
        actor_loss.backward()
        critic_loss.backward()
        optimizerA.step()
        optimizerC.step()
    paddle.save(actor.state_dict(), 'model/actor.pdparams')
    paddle.save(critic.state_dict(), 'model/critic.pdparams')
    env.close()



if __name__ == '__main__':
    if os.path.exists('model/actor.pdparams'):
        actor = Actor(state_size, action_size)
        model_state_dict  = paddle.load('model/actor.pdparams')
        actor.set_state_dict(model_state_dict )
        print('Actor Model loaded')
    else:
        actor = Actor(state_size, action_size)
    if os.path.exists('model/critic.pdparams'):
        critic = Critic(state_size, action_size)
        model_state_dict  = paddle.load('model/critic.pdparams')
        critic.set_state_dict(model_state_dict )
        print('Critic Model loaded')
    else:
        critic = Critic(state_size, action_size)
    trainIters(actor, critic, n_iters=201)


Iteration: 80, Score: 70
Iteration: 90, Score: 199
Iteration: 100, Score: 92
Iteration: 120, Score: 156
Iteration: 130, Score: 41
Iteration: 140, Score: 199
Iteration: 150, Score: 199
Iteration: 160, Score: 199
Iteration: 170, Score: 199
Iteration: 180, Score: 199
Iteration: 190, Score: 199
Iteration: 200, Score: 199
import math
import random
import os
import gym
import numpy as np

import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.distribution import Categorical

import matplotlib.pyplot as plt
from visualdl import LogWriter


#This code is from openai baseline
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env

import numpy as np
from multiprocessing import Process, Pipe

def worker(remote, parent_remote, env_fn_wrapper):
    parent_remote.close()
    env = env_fn_wrapper.x()
    while True:
        cmd, data = remote.recv()
        if cmd == 'step':
            ob, reward, done, info = env.step(data)
            # ob, reward, done, info = env.step(1)

            if done:
                ob = env.reset()
            remote.send((ob, reward, done, info))
        elif cmd == 'reset':
            ob = env.reset()
            remote.send(ob)
        elif cmd == 'reset_task':
            ob = env.reset_task()
            remote.send(ob)
        elif cmd == 'close':
            remote.close()
            break
        elif cmd == 'get_spaces':
            remote.send((env.observation_space, env.action_space))
        else:
            raise NotImplementedError

class VecEnv(object):
    """
    An abstract asynchronous, vectorized environment.
    """
    def __init__(self, num_envs, observation_space, action_space):
        self.num_envs = num_envs
        self.observation_space = observation_space
        self.action_space = action_space

    def reset(self):
        """
        Reset all the environments and return an array of
        observations, or a tuple of observation arrays.
        If step_async is still doing work, that work will
        be cancelled and step_wait() should not be called
        until step_async() is invoked again.
        """
        pass

    def step_async(self, actions):
        """
        Tell all the environments to start taking a step
        with the given actions.
        Call step_wait() to get the results of the step.
        You should not call this if a step_async run is
        already pending.
        """
        pass

    def step_wait(self):
        """
        Wait for the step taken with step_async().
        Returns (obs, rews, dones, infos):
         - obs: an array of observations, or a tuple of
                arrays of observations.
         - rews: an array of rewards
         - dones: an array of "episode done" booleans
         - infos: a sequence of info objects
        """
        pass

    def close(self):
        """
        Clean up the environments' resources.
        """
        pass

    def step(self, actions):
        self.step_async(actions)
        return self.step_wait()

    
class CloudpickleWrapper(object):
    """
    Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
    """
    def __init__(self, x):
        self.x = x
    def __getstate__(self):
        import cloudpickle
        return cloudpickle.dumps(self.x)
    def __setstate__(self, ob):
        import pickle
        self.x = pickle.loads(ob)

        
class SubprocVecEnv(VecEnv):
    def __init__(self, env_fns, spaces=None):
        """
        envs: list of gym environments to run in subprocesses
        """
        self.waiting = False
        self.closed = False
        nenvs = len(env_fns)
        self.nenvs = nenvs
        self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
        self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
            for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
        for p in self.ps:
            p.daemon = True # if the main process crashes, we should not cause things to hang
            p.start()
        for remote in self.work_remotes:
            remote.close()

        self.remotes[0].send(('get_spaces', None))
        observation_space, action_space = self.remotes[0].recv()
        VecEnv.__init__(self, len(env_fns), observation_space, action_space)

    def step_async(self, actions):
        for remote, action in zip(self.remotes, actions):
            remote.send(('step', action))
        self.waiting = True

    def step_wait(self):
        results = [remote.recv() for remote in self.remotes]
        self.waiting = False
        obs, rews, dones, infos = zip(*results)
        return np.stack(obs), np.stack(rews), np.stack(dones), infos

    def reset(self):
        for remote in self.remotes:
            remote.send(('reset', None))
        return np.stack([remote.recv() for remote in self.remotes])

    def reset_task(self):
        for remote in self.remotes:
            remote.send(('reset_task', None))
        return np.stack([remote.recv() for remote in self.remotes])

    def close(self):
        if self.closed:
            return
        if self.waiting:
            for remote in self.remotes:            
                remote.recv()
        for remote in self.remotes:
            remote.send(('close', None))
        for p in self.ps:
            p.join()
            self.closed = True
            
    def __len__(self):
        return self.nenvs

writer = LogWriter(logdir="./log") 

#from multiprocessing_env import SubprocVecEnv

num_envs = 8
env_name = "CartPole-v0"

def make_env():
    def _thunk():
        env = gym.make(env_name)
        return env
    return _thunk

plt.ion()
envs = [make_env() for i in range(num_envs)]
envs = SubprocVecEnv(envs) # 8 env

env = gym.make(env_name) # a single env

class ActorCritic(nn.Layer):
    def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
        super(ActorCritic, self).__init__()
        nn.initializer.set_global_initializer(nn.initializer.XavierNormal(), nn.initializer.Constant(value=0.))
        
        self.critic = nn.Sequential(
            nn.Linear(num_inputs, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 1)
        )
        
        self.actor = nn.Sequential(
            nn.Linear(num_inputs, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, num_outputs),
            nn.Softmax(axis=1),
        )
    
    def forward(self, x):
        value = self.critic(x)
        probs = self.actor(x)
        dist  = Categorical(probs)
        return dist, value


def test_env(vis=False):
    state = env.reset()
    if vis: env.render()
    done = False
    total_reward = 0
    while not done:
        state = paddle.to_tensor(state,dtype="float32").unsqueeze(0)
        dist, _ = model(state)
        next_state, reward, done, _ = env.step(dist.sample([1]).cpu().numpy()[0][0])        
        state = next_state
        if vis: env.render()
        total_reward += reward
    return total_reward


def compute_returns(next_value, rewards, masks, gamma=0.99):
    R = next_value
    returns = []
    for step in reversed(range(len(rewards))):
        R = rewards[step] + gamma * R * masks[step]
        returns.insert(0, R)
    return returns

def plot(frame_idx, rewards):
    plt.plot(rewards,'b-')
    plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
    plt.pause(0.0001)

num_inputs  = envs.observation_space.shape[0]
num_outputs = envs.action_space.n

#Hyper params:
hidden_size = 256
lr          = 1e-3
num_steps   = 8

model = ActorCritic(num_inputs, num_outputs, hidden_size)
optimizer = optim.Adam(parameters=model.parameters(),learning_rate=lr)
save_model_path = "models/A2C_model.pdparams"
if os.path.exists(save_model_path):
    model_state_dict  = paddle.load(save_model_path)
    model.set_state_dict(model_state_dict )
    print(' Model loaded')

# 首先定义最大的训练帧数,并行的环境envs每执行一步step()算一帧。如果按照前面定义的
# 是8组环境并行,那么envs就需要输入8组动作,同时会输出8组回报(reward)、下一
# 观测状态(next_state)。

max_frames   = 20000
frame_idx    = 0
test_rewards = []


state = envs.reset()

while frame_idx < max_frames:

    log_probs = []
    values    = []
    rewards   = []
    masks     = []
    entropy = 0

    # rollout trajectory
    # 现在模型展开num_steps步的轨迹:模型会根据观测状态返回动作的分布、状态价值,然后
    # 根据动作分布采样动作,接着环境step一步进入到下一个状态,并返回reward。
    for _ in range(num_steps):
        state = paddle.to_tensor(state,dtype="float32")
        dist, value = model(state)

        action = dist.sample([1]).squeeze(0)
        next_state, reward, done, _ = envs.step(action.cpu().numpy())

        log_prob = dist.log_prob(action)
        entropy += dist.entropy().mean()
        
        log_probs.append(log_prob)
        values.append(value)
        rewards.append(paddle.to_tensor(reward,dtype="float32").unsqueeze(1))
        masks.append(paddle.to_tensor(1 - done).unsqueeze(1))
        
        state = next_state
        frame_idx += 1
        
        Plot = False
        # 程序每隔100帧会进行一次评估,评估的方式是运行2次test_env()并计算返回的
        # total_reward的均值,这里用VisualDL记录它,文章的最后会展示模型运行效果。
        if  frame_idx % 100 == 0:
            test_rewards.append(np.mean([test_env() for _ in range(2)]))
            writer.add_scalar("test_rewards", value=test_rewards[-1], step=frame_idx)            
            if Plot:
                plot(frame_idx, test_rewards)
            else:
                print('frame {}. reward: {}'.format(frame_idx, test_rewards[-1]))

    # 程序会记录展开轨迹的动作对数似然概率log_probs、模型估计价值values、回报rewards等,
    # 并计算优势值advantage 。由于是多环境并行,可以用paddle.concat将这些值分别拼接起来,
    # 随后计算出演员网络的损失actor_loss、评论家网络的损失critic_loss,在最终loss中有一项
    # 是动作分布熵的均值,希望能增大网络的探索能力。        
    next_state = paddle.to_tensor(next_state,dtype="float32")
    _, next_value = model(next_state)
    returns = compute_returns(next_value, rewards, masks)
    
    log_probs = paddle.concat(log_probs)
    returns   = paddle.concat(returns).detach()
    values    = paddle.concat(values)

    advantage = returns - values

    actor_loss  = -(log_probs * advantage.detach()).mean()
    critic_loss = advantage.pow(2).mean()

    loss = actor_loss + 0.5 * critic_loss - 0.01 * entropy
    # 用VisualDL记录训练的actor_loss、critic_loss以及合并后的loss。然后再反向传播,优化神
    # 经网络的参数,开始下一轮的训练循环。
    writer.add_scalar("actor_loss", value=actor_loss, step=frame_idx)
    writer.add_scalar("critic_loss", value=critic_loss, step=frame_idx)
    writer.add_scalar("loss", value=loss, step=frame_idx)
    ##动态学习率,每隔2000帧缩放一次
    if frame_idx % 2000 ==0:
        lr = 0.92*lr
        optimizer.set_lr(lr)    

    optimizer.clear_grad()
    loss.backward()
    optimizer.step()

 
if not os.path.exists(os.path.dirname(save_model_path)):
            os.makedirs(os.path.dirname(save_model_path))
# paddle.save(model.state_dict(), save_model_path)

在这里插入图片描述


标签:state,self,2476218,paddle,step,env,size
来源: https://blog.csdn.net/m0_61403154/article/details/120890235

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有