ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

基于硬件 SPI 的数据抽象实例

2021-10-12 19:34:40  阅读:213  来源: 互联网

标签:struct spi dev 数据抽象 SPI 实例 send GPIO recv


1.写在前面

spi(Serial Peripheral Interface)即串行外设接口。与i2c一样,spi也常用外设设备通信的总线,从事嵌入式开发必不可少的掌握。

根据本人以往的经历,对spi进行总结(主要是MCU范畴,Linux已有成熟的驱动设备),主要目的及实现:

  1. spi总线与spi设备分离;

  2. 快速使用新的硬件spi或者模拟spi;

  3. 方便移植spi总线设备及spi外设程序到不同mcu平台。

2.spi总线抽象

此部分实现源码为:spi_core.c spi_core.h

2.1 spi总线模型对外接口(API)

/*extern function*/
extern int spi_send_then_recv(struct spi_dev_device *spi_dev,const void *send_buff,
							  unsigned short send_size,void *recv_buff,unsigned short recv_size);
extern int spi_send_then_send(struct spi_dev_device *spi_dev,const void *send_buff1,
							  unsigned short send_size1,const void *send_buff2,unsigned short send_size2);
extern int spi_send_recv(struct spi_dev_device *spi_dev,const void *send_buff,void *recv_buff,
						 unsigned short data_size);
extern int spi_send(struct spi_dev_device *spi_dev,const void *send_buff,unsigned short send_size);
  • 1)spi_send_then_recv,标准spi,常规操作,发送完一帧再接收,如读取某芯片寄存器的值;
  • 2)spi_send_then_send,标准spi,常规操作,发送完一帧再发送,如向某芯片寄存器(地址)写入数据;
  • 3)spi_send_recv,非标spi,具体看芯片时序图,产生时钟信号,发送完成的同时,也接收完成;第二种情况是,只接收,发送动作只是用来产生时钟信号,如一些AD芯片;
  • 4)spi_send,标准或非标spi都使用,只发送无返回值或者无须理会返回值,如spi LCD屏。

2.2 spi总线抽象API实现

以“spi_send_then_recv”函数为例:

  • 1)spi_dev:spi设备指针,类型为“struct spi_dev_device”,驱动一个spi外设时,首先需要对此指针进行初始化;
  • 2)send_buff:待发送数据(缓存);
  • 3)send_size:发送数据量大小(单位字节);
  • 4):recv_buff:存放返回值数据缓存(地址);
  • 5):recv_size:返回数据量大小。

另外3个函数,第一个参数都为spi设备指针,其他参数为发送/接收缓冲区,收发数据量等,通过变量名即可看出。

2.3 struct spi_de_device

该结构体为关键,调用API驱动一个外设时,需要先初始化(类似Linux的注册设备驱动)。一个完整的spi外设,包括片选和总线量部分,一个总线可和多个片选组成,驱动多个外设,因此struct spi_dev_device设计原型为:

struct spi_dev_device
{ 
    void (*spi_cs)(unsigned char state); 
    struct spi_bus_device *spi_bus; 
};
  • 1)第一个参数为函数指针,主要功能的实现spi外设片选的选择(拉低/拉高)功能;

  • 2)第二个参数为spi总线相关的结构体指针,主要是底层相关收据收发的的功能,具体继续往下看改结构体。

2.4 struct spi_bus_device *spi_bus

该结构体为底层硬件相关的spi总线实现,具体由实际需求实现,如用硬件spi还是用模拟spi。struct spi_bus_device*spi_bus原型为:

struct spi_bus_device
{ 
    int (*spi_bus_xfer)(struct spi_dev_device *spi_bus,struct spi_dev_message *msg);
    void *spi_phy;
    unsigned char data_width;
};
  • 1)第一个参数是函数指针,为spi总线收发函数,这部分就是我们平常写裸机代码时候写到的,只是这里把它放在一个结构体里面,以函数指针的方式实现;这样的好处是,上层接口不变,更好其他MCU或者使用模拟spi时,只需修改此部分的函数实体,上层代码不需变动。

  • 2)第二个参数,一个指针,表示具体物理spi,如stm32的SPI1、SPI2,或者模拟spi;

  • 3)第三参数,数据宽度,一般是8bit或者16bit。

其他参数,如数据速率、spi模式等,其实也可以放在此处,只是个人觉得此类参数不常变动,为了节约内存,故不加入此结构体配置中。下面中断分析函数指针

int (*spi_bus_xfer) (struct spi_dev_device *spi_bus,struct spi_dev_message *msg)

2.5 spi_bus_xfer

该函数指针入口参数为spi设备指针(struct spi_dev_device )、spi设备信息帧指针(struct spi_dev_message)。struct spi_dev_device与前面提及的为同一类参数,struct spi_dev_message为收发数据信息帧,其原型如下:

struct spi_dev_message
{
    const void  *send_buf;
    void        *recv_buf;
    int  length;
    unsigned char cs_take    : 1;
    unsigned char cs_release : 1;
};
  • 1)send_buf:待发送数据(缓存);

  • 2)recv_buf:存放返回值数据缓存(地址);

  • 3)length:发送/接收数据长度;

  • 4)cs_take:使能片选;

  • 5)cs_release:释放片选。

3. spi总线抽象实现

此部分实现源码为:spi_hw.c spi_hw.h

3.1 spi总线抽象API实现

  • 第一步:“spi_send_then_recv”,实现代码如下:
int spi_send_then_recv(struct spi_dev_device *spi_dev,const void *send_buff,unsigned short send_size,void *recv_buff,unsigned short recv_size)
{
    struct spi_dev_message message;
 
    message.length     = send_size;
    message.send_buf   = send_buff;
    message.recv_buf   = 0;
    message.cs_take    = 1;
    message.cs_release = 0;
    spi_dev->spi_bus->spi_bus_xfer(spi_dev,&message);
    
    message.length     = recv_size;
    message.send_buf   = 0;
    message.recv_buf   = recv_buff;
    message.cs_take    = 0;
    message.cs_release = 1;
    spi_dev->spi_bus->spi_bus_xfer(spi_dev,&message);
     
    return 0;
}
实现的功能是,spi发送完一帧后再接收一帧数据。

1)spi_dev即是传入的设备指针;

2)收发参数主要传递给“spi_dev_message”;

3)对于第一帧“spi_dev_message”,不接收返回值,所以recv_buf设置空(0);此时片选拉低(cs_take=1),发送完还不能拉高片选(cs_release=0),待后面接收帧接收完再拉高片选(cs_release=1),从外设时序图也可以看出;

4)对于第二帧,此时发送数据为空,所以send_buf设置为0,此时的发送动作并非真的发送,只是用来产生接收数据的时钟信号。

  • 第二步:spi_send_then_send,与spi_send_then_recv类似,只是后面的“接收”动作变为“发送”动作,故不作重复分析,源码看附件。

  • 第三步:spi_send_recv,实现代码如下:

int spi_send_recv(struct spi_dev_device *spi_dev,const void *send_buff,void *recv_buff,unsigned short data_size)
{
    message.length   = data_size;
    message.send_buf = send_buff;
    message.recv_buf = recv_buff;
    message.cs_take  = 1;
    message.cs_release = 1;
    spi_dev->spi_bus->spi_bus_xfer(spi_dev,&message);
 
    return 0;
}
实现功能是发送完同时接收完,或者只接收。
1)spi_dev即是传入的设备指针;
2)收发数据及长度由用户通过形参传入,只接收时,发送数据缓存可设置为空(0);
3)操作前拉低片选(cs_take=1),操作完成片选拉高(cs_release=1);
  • 第四步:spi_send,实现代码如下:
int spi_send(struct spi_dev_device *spi_dev,const void *send_buff,unsigned short send_size)
{
    struct spi_dev_message message;
 
    message.length    = send_size;
    message.send_buf  = send_buff;
    message.recv_buf  = 0;
    message.cs_take   = 1;
    message.cs_release = 1;
    spi_dev->spi_bus->spi_bus_xfer(spi_dev,&message);
    
    return 0;
}

该函数与spi_send_recv非常类似,但只有“发送”动作,无“接收”动作,故recv_buf设置为空(0)。

3.2 spi总线抽象底层实现(以stm32为例)

主要实现“struct spi_bus_device”中的“spi_bus_xfer”函数,此部分相当于平常裸机代码。以8bit模式为例,代码如下,详细代码看附件“spi_hw.c”。

static int stm32_spi_bus_xfer(struct spi_dev_device *spi_dev,struct spi_dev_message *msg)
{
   int size;
   SPI_TypeDef *SPI_NO;
   
   SPI_NO = (SPI_TypeDef *)spi_dev->spi_bus->spi_phy;
   size = msg->length;
   if(msg->cs_take)
   {/* take CS */
		spi_dev->spi_cs(0);
   }
   if(spi_dev->spi_bus->data_width <=8)
   {
       const unsigned short * send_ptr = msg->send_buf;
       unsigned short *recv_ptr = msg->recv_buf;
     
       while(size--)
       {
       	   unsigned short data = 0xFF;
	    
	       if(send_ptr != 0)
	       {
	           data = *send_ptr++;
	       }
	       while (SPI_I2S_GetFlagStatus(SPI_NO, SPI_I2S_FLAG_TXE) == RESET); 
	       SPI_I2S_SendData(SPI_NO, data);
	       while (SPI_I2S_GetFlagStatus(SPI_NO, SPI_I2S_FLAG_RXNE) == RESET); 
	       data = SPI_I2S_ReceiveData(SPI_NO); 
	    
	       if(recv_ptr != 0)
	       {
	           *recv_ptr++ = data;
	       }
	   }
   }
   if(msg->cs_release)
   {/* release CS */ 
       spi_dev->spi_cs(1);
   }
   return msg->length;
}

主要功能:

  • 1)数据收发,片选选择/释放;
  • 2)分为8bit模拟和16bit模式收/发。

3.3 最后,执行相关初始化,如IO口、时钟、spi相关配置。

void stm32f1xx_spi_init(struct spi_bus_device *spi0,unsigned char byte_size0,struct spi_bus_device *spi1,unsigned char byte_size1)
{
    SPI_InitTypeDef  SPI_InitStructure;
    GPIO_InitTypeDef GPIO_InitStructure; 
 
    if(spi0)
    {//SPI1
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
    if(byte_size0 <= 8)
        SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;  
    else
        SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; 
        
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;          
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;     
    SPI_InitStructure.SPI_CRCPolynomial = 7;
    SPI_Init(SPI1, &SPI_InitStructure);
    SPI_Cmd(SPI1, ENABLE); 
    //spi io
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO,ENABLE);
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    spi0->data_width = byte_size0;
    spi0->spi_bus_xfer = stm32_spi_bus_xfer;
    spi0->spi_phy = SPI1;
    }
}

注意问题点:

  • 1)spi 4种模式根据器件时序图选择,一般选择第一种(L,1)或者第三种(H,2);

  • 2)片选控制模式(SPI_NSS)必须选择软件控制模式;

  • 3)设置为“全双工模式”,此模式下能够适应各类标准、非标准spi;

  • 4)spi0指针初始化,即是只需上一步我们实现的函数实体,及相关spi参数。

3.4 小结

至此,一个stm32硬件spi总线实现完毕,剩下的就是利用这个总线驱动一个spi外设。也可以通过io口模拟spi,后面再写一篇使用模拟spi的文章,主要改动也在此处,总线程序或者下面的外设程序都无需修改。

4. 使用spi抽象(以25aa256 EEPROM为例)

此部分实现源码为:25xx.c 25xx.h

4.1 初始化(注册设备)

采用stm32 SPI2驱动25aa256,步骤如下:

  • 1)定义spi总线设备及EEPROM设备
struct  spi_dev_device ee_25xx_spi_dev;
struct  spi_bus_device  spi_bus1;
  • 2)初始化IO及2个设备指针
    首先实现片选函数实体,片选(CS)IO为PB12。
static void spi1_cs(unsigned char state)
{
    if (state)
 		GPIO_SetBits(GPIOB, GPIO_Pin_12);
    else
 		GPIO_ResetBits(GPIOB, GPIO_Pin_12);
}

初始化25aa256.

void ee_25xx_init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
  
    /* SPI2 cs */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;          
    GPIO_Init(GPIOB, &GPIO_InitStructure); 
    GPIO_SetBits(GPIOB, GPIO_Pin_12);
      
    /* device init */
    st32f1xx_spi_init(0,&spi_bus1);
    ee_25xx_spi_dev.spi_cs  = spi1_cs;
    ee_25xx_spi_dev.spi_bus = &spi_bus1;   
}

“ee_25xx_spi_dev”即是我们“注册”的设备,下面可通过上面描述API操作25aa256,传入参数为“ee_25xx_spi_dev”地址(指针)。

4.2 操作(读写)25aa256

  • 1)25aa256使能寄存器操作
void ee_25xx_write_enable(uint8_t select)
{
    spi_send(&ee_25xx_spi_dev,&select,1);
}

该操作用到“spi_send”接口,无返回值,简单明了!

  • 2)向25aa256写入1字节数据
void ee_25xx_write_byte(uint16_t write_addr,uint8_t write_data)
{
    uint8_t send_buff[3];
 
    ee_25xx_write_enable(REG_WRITE_ENABLE);
    send_buff[0] = REG_WRITE_COMMAND;
    send_buff[1] = (write_addr>>8)&0xff;
    send_buff[2] = write_addr&0xff;
    spi_send_then_send(&ee_25xx_spi_dev,send_buff,3,&write_data,1);
    ee_25xx_write_enable(REG_WRITE_DISABLE);
}
该操作用到“spi_send_then_send”接口,从函数名称也可以很好地理解。基本步骤为:
  • 使能25aa256;
  • 发送缓存填充,此部分包括写命令、写地址;
  • 写数据填充,单个字节直接调用形参,无额外申请内存;
  • 调用“spi_send_then_send”,完成写操作。
  • 3)从25aa256读取数据
void ee_25xx_read_bytes(uint16_t read_addr,uint8_t *read_buff,uint16_t read_bytes)
{
    uint8_t send_buff[3];
 
    send_buff[0] = REG_READ_COMMAND;
    send_buff[1] = (read_addr>>8)&0xff;
    send_buff[2] = read_addr&0xff;
    spi_send_then_recv(&ee_25xx_spi_dev,send_buff,3,read_buff,read_bytes);
}
该操作用到“spi_send_then_recv”接口。基本步骤为:
  • 发送缓存填充,此部分包括写命令、写地址;
  • 形参地址传递作为接收地址;
  • 调用“spi_send_then_send”,完成读操作。
  • 4)25aa256写状态寄存器、读状态寄存器,同理,详细看源码。

  • 5) 25aa256页写算法与i2c接口的EEPROM(AT24c16)原理相同,可以查看另一篇文章:EEPROM页写算法

4.3 25aa256驱动小结

至此,完成25aa256的驱动程序,所有操作通过上述4个API接口,移植到新的mcu平台时,该器件驱动程序几乎无须修改,只需修改spi底层相关的函数。驱动其他spi外设,与25aa256的流程步骤一致。

其实,通过此问题也可发现,驱动一个设备是相对简单,更多的难点是在应用,比如25aa256的页写算法。因此,把底层“轮子”造好后,不需再重复造轮子,把更多的时间花在研究应用上面。

5. 总结

本文主要描述mcu下spi总线的抽象分层,主要实现手段是充分利用结构体和函数指针。

  • 1)使用spi总线、增加新总线、移植到新平台等,只需将“struct spi_bus_device”中函数指针实例化,spi相关参数初始化即可;

  • 2)驱动一个外设时,首先加入片选实例化函数,初始化“struct spi_dev_device”,然后调用4个API函数操作外设;

  • 3)同一个总线可以挂多个外设,即是定义多个“struct spi_dev_device”指针,此时片选函数需额外定义,总线指针初始化为已初始的总线实例;假设再增加一个adc外设:

struct  spi_dev_device adc_spi_dev;
static void spi1_cs1(unsigned char state)
{
    if (state)
        GPIO_SetBits(GPIOB, GPIO_Pin_11);
    else
 		GPIO_ResetBits(GPIOB, GPIO_Pin_11);
}
 
void adc_init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
  
    /* SPI cs */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;          
    GPIO_Init(GPIOB, &GPIO_InitStructure); 
    GPIO_SetBits(GPIOB, GPIO_Pin_11);
      
    /* device init */
    //st32f1xx_spi_init(0,&spi_bus1); /* 共用spi1,已经初始化过,无需重复初始化 */
    adc_spi_dev.spi_cs = spi1_cs1;    /* 片选函数必须独立 */
    adc_spi_dev.spi_bus = &spi_bus1;  /* 指向spi1 */  
}
  • 4)至于非标准spi,大部分情况都可以用此4个API实现,目前为止,鄙人所用过的spi器件都可以实现。

6. 源码

[1] https://github.com/Prry/drivers-for-mcu

7. 参考

[1] https://github.com/RT-Thread/rt-thread

标签:struct,spi,dev,数据抽象,SPI,实例,send,GPIO,recv
来源: https://blog.csdn.net/helaisun/article/details/120729778

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有