ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【论文复现】Dynamic ReLU(2020)

2021-07-22 23:00:25  阅读:259  来源: 互联网

标签:函数 self Dynamic ReLU channels 2020 relu theta


目录

前言

论文地址: https://arxiv.org/pdf/2003.10027.pdf.
源码地址: https://github.com/Islanna/DynamicReLU.

贡献:提出Dynamic ReLU激活函数

Dy-ReLU特点(优点):

  • 将所有输入元素 x={ x c x_c xc​} 的全局上下文编码在超参数 θ ( x ) \theta(x) θ(x) 中(运用SE模块的注意力机制),以适应激活函数 f θ ( x ) ( x ) f_{\theta(x)}(x) fθ(x)​(x)(可以根据输入数据x,动态的学习选择最佳的激活函数)。

一、背景或动机

ReLU 在深度学习的发展中地位举足轻重,它简单而且高效,极大地提高了深度网络的性能,被很多 CV 任务的经典网络使用。不过 ReLU 及其变种(无参数的 leaky ReLU 和有参数的 PReLU)都是静态的,对不同的输入以完全相同的方式执行,也就是说他们最终的参数都是固定的。那么自然会引发一个问题,能否根据输入的数据动态调整 ReLU 的参数呢?

针对这个问题,本文提出了一种动态的激活函数,Dynamic-ReLU(简称Dy-ReLU)。如下图:
在这里插入图片描述

由上图可以看到,Dy-ReLU是一种动态的分段函数 f θ ( x ) ( x ) f_{\theta(x)}(x) fθ(x)​(x),其中最重要的参数 θ ( x ) \theta(x) θ(x) 由输入x绝定。最关键的思路是:将所有输入元素 x={ x c x_c xc​} 的全局上下文编码在超参数 θ ( x ) \theta(x) θ(x) 中,以适应激活函数 f θ ( x ) ( x ) f_{\theta(x)}(x) fθ(x)​(x)。

该设计能够在引入极少量的参数的情况下大大增强网络的表示能力,本文对于空间和通道上不同的共享机制设计了三种 DY-ReLU,分别是 DY-ReLU-A、DY-ReLU-B 以及 DY-ReLU-C。

二、Dynamic ReLU

Dynamic ReLU(Dy-ReLU)是一种动态的分段函数,参数依赖于输入x,不会增加网络的深度和宽度,但是可以在引入极少量的参数的情况下大大增强网络的表示能力。

2.1、定义Dynamic ReLU

最原始的ReLU为 y = m a x ( 0 , x ) y=max(0, x) y=max(0,x),函数图像如下:

在这里插入图片描述
可以看到这个函数非常的简单。对于输入向量 x x x 的第 c c c 个维度channel的输入 x c x_c xc​,对应的激活函数可以记为 y c = m a x x c , 0 y_c = max{x_c, 0} yc​=maxxc​,0,进而ReLU可以统一表示为带参分段函数 y c = m a x k y_c = max_k yc​=maxk​{ a c k x c + b c k {a^k_c x_c + b^k_c} ack​xc​+bck​}。当x>0时,若a=1,b=0; 当x<时,若a=b=0,就是ReLU。基于此提出下式动态 ReLU 来针对 x = x = x= { x c {x_c} xc​} 自适应 a c k a^k_c ack​ 和 b c k b^k_c bck​。所以有:
在这里插入图片描述
系数( a c k a^k_c ack​, b c k b^k_c bck​)由超函数 θ ( x ) \theta(x) θ(x) 计算得到,具体如下:
在这里插入图片描述
其中 K K K 表示函数的个数, C C C为通道数。参数( a c k a^k_c ack​, b c k b^k_c bck​)不仅仅与 x c x_c xc​ 有关,还和 x j x_j xj​ 有关(有点注意力机制的意思,代码上也确实是用注意力模块SE完成的)。

2.2、实现超函数 θ ( x ) \theta(x) θ(x)

以DY-ReLU-A为例:
在这里插入图片描述
DY-ReLU 的核心超函数 θ ( x ) \theta(x) θ(x) 的实现采用 SE 模块(SENet 提出的 Squeeze-and-Excitation)来实现。对于输入tesnsor的维度是 C x H x W,首先通过一个全局池化层压缩空间信息,然后经过两个中间夹着一个 ReLU 的全连接层(降维 + 升维),这里输出 2K个元素,再接一个归一化层(normalization layer)将输出限定在 (-1, 1)之间(采用【2 * Sigmoid - 1】函数就可以做到)。最后再经过一个初始值和残差的加权和得到最终输出: θ ( x ) = \theta(x) = θ(x)=( a c k a^k_c ack​, b c k b^k_c bck​)

在这里插入图片描述

其中 α c k ( x ) \alpha^k_c(x) αck​(x) 和 β c k ( x ) \beta^k_c(x) βck​(x)分别为 a c k a^k_c ack​和 b c k b^k_c bck​的初始值, λ a \lambda_a λa​ 和 λ b \lambda_b λb​ 分别为残差范围控制标量,也就是加的权。 α c k ( x ) \alpha^k_c(x) αck​(x) 、 β c k ( x ) \beta^k_c(x) βck​(x)、 λ a \lambda_a λa​ 和 λ b \lambda_b λb​都是超参数。

2.3、Dynamic ReLU的三个版本

在这里插入图片描述

  1. DY-ReLU-A(空间和通道都共享):所有空间位置和通道共享相同的分段线性激活函数。其超函数的网络结构(如图a)与DY-ReLU B相似,只是输出的数目减少到2K。与DY-ReLU-B相比,DY-ReLU-a的计算量较小,但表示能力较弱。
  2. DY-ReLU-B(空间共享通道不共享):其网络结构如图2-(B)所示。激活函数需要由超函数计算2KC参数(每个通道2K)。
  3. DY-ReLU-C (空间通道都不共享)。虽然效果最好,但是参数太大了,不太可能用这个,这里就不讲了,感兴趣的可以看原文。

在这里插入图片描述
如上图所示,DY-ReLU可以根据输入x的变化,自动变化几个关键参数,自适应的更换更高效的激活函数,所以我们才称其为动态神经网络。

三、论文实验结果

在这里插入图片描述
在这里插入图片描述
作者通过实验得出以下几点发现:

  1. DyReLUB与DyReLUC更适合于图像分类任务;

  2. DyReLUB与DyReLUC更适合于关键点检测的骨干网络,而DyReLUC更适合于关键点检测的head网络;

  3. 在图像分类方面,DyReLU在MobileNetV2的嵌入应用可以得到4.2% 的性能提升;

  4. 在关键点检测方面,DyReLU的应用可以得到3.5AP的性能提升。

因为DyReLUC的运算量太大,DyReLUA的性能又没那么好,所以我们一般是用DyReLUB。

四、PyTorch实现

这里只实现了前两个版本,第三个版本的参数太大了,一般我们不用。

class DyReLU(nn.Module):
    def __init__(self, channels, reduction=4, k=2, conv_type='2d'):
        super(DyReLU, self).__init__()
        self.channels = channels
        self.k = k
        self.conv_type = conv_type
        assert self.conv_type in ['1d', '2d']

        self.fc1 = nn.Linear(channels, channels // reduction)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Linear(channels // reduction, 2*k)
        self.sigmoid = nn.Sigmoid()

        self.register_buffer('lambdas', torch.Tensor([1.]*k + [0.5]*k).float())
        self.register_buffer('init_v', torch.Tensor([1.] + [0.]*(2*k - 1)).float())

    def get_relu_coefs(self, x):
        theta = torch.mean(x, dim=-1)
        if self.conv_type == '2d':
            theta = torch.mean(theta, dim=-1)
        theta = self.fc1(theta)
        theta = self.relu(theta)
        theta = self.fc2(theta)
        theta = 2 * self.sigmoid(theta) - 1
        return theta

    def forward(self, x):
        raise NotImplementedError

class DyReLUA(DyReLU):
    def __init__(self, channels, reduction=4, k=2, conv_type='2d'):
        super(DyReLUA, self).__init__(channels, reduction, k, conv_type)
        self.fc2 = nn.Linear(channels // reduction, 2*k)

    def forward(self, x):
        assert x.shape[1] == self.channels
        theta = self.get_relu_coefs(x)  # 这里是执行到normalize
        relu_coefs = theta.view(-1, 2*self.k) * self.lambdas + self.init_v  # 这里是执行完 theta(x)

        # BxCxL -> LxCxBx1
        x_perm = x.transpose(0, -1).unsqueeze(-1)
        # a^k_c=relu_coefs[:, :self.k]    b^k_c=relu_coefs[:, self.k:]
        # a^k_c(x) * x_c + b^k_c(x)
        output = x_perm * relu_coefs[:, :self.k] + relu_coefs[:, self.k:]
        # LxCxBx2 -> BxCxL
        # y_c = max{a^k_c(x) * x_c + b^k_c(x)}
        result = torch.max(output, dim=-1)[0].transpose(0, -1)

        return result

class DyReLUB(DyReLU):
    def __init__(self, channels, reduction=4, k=2, conv_type='2d'):
        super(DyReLUB, self).__init__(channels, reduction, k, conv_type)
        self.fc2 = nn.Linear(channels // reduction, 2*k*channels)

    def forward(self, x):
        assert x.shape[1] == self.channels
        theta = self.get_relu_coefs(x)

        relu_coefs = theta.view(-1, self.channels, 2*self.k) * self.lambdas + self.init_v

        if self.conv_type == '1d':
            # BxCxL -> LxBxCx1
            x_perm = x.permute(2, 0, 1).unsqueeze(-1)
            output = x_perm * relu_coefs[:, :, :self.k] + relu_coefs[:, :, self.k:]
            # LxBxCx2 -> BxCxL
            result = torch.max(output, dim=-1)[0].permute(1, 2, 0)

        elif self.conv_type == '2d':
            # BxCxHxW -> HxWxBxCx1
            x_perm = x.permute(2, 3, 0, 1).unsqueeze(-1)
            output = x_perm * relu_coefs[:, :, :self.k] + relu_coefs[:, :, self.k:]
            # HxWxBxCx2 -> BxCxHxW
            result = torch.max(output, dim=-1)[0].permute(2, 3, 0, 1)

        return result

Reference

链接: 博客1.

标签:函数,self,Dynamic,ReLU,channels,2020,relu,theta
来源: https://blog.csdn.net/qq_38253797/article/details/119007986

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有