ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

网络层---IP协议

2021-07-14 10:04:52  阅读:363  来源: 互联网

标签:IP IP地址 网络层 --- NAT 主机 分片 路由器


IP协议


IP给通信双方提供了一种能力:将数据从A主机跨网络传输到B主机的能力。

1. IP协议报头

在这里插入图片描述

  • 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.
  • 4位首部长度(header length): IP头部的长度是多少个32bit, 也就是 length * 4 的字节数. 4bit表示最大的数字是15, 因此IP头部最大长度是60字节. (标准情况下为20字节,但是这里的单位是4字节的,所以这里应该填写5的二进制为101)
  • 8位服务类型(Type Of Service): 3位优先权字段(已经弃用), 4位TOS字段, 和1位保留字段(必须置为0). 4位TOS分别表示: 最小延时, 最大吞吐量, 最高可靠性, 最小成本. 这四者相互冲突, 只能选择一个. 对于ssh/telnet这样的应用程序, 最小延时比较重要; 对于ftp这样的程序, 最大吞吐量比较重要. (操作系统帮我们决定,使用默认的就行)
  • 16位总长度(total length): IP数据报整体占多少个字节.
  • 16位标识(id): 唯一的标识主机发送的报文. 如果IP报文在数据链路层被分片了, 那么每一个片里面的这个id都是相同的.
  • 3位标志字段: 第一位保留(保留的意思是现在不用, 但是还没想好说不定以后要用到). 第二位置为1表示禁止分片, 这时候如果报文长度超过MTU, IP模块就会丢弃报文. 第三位表示"更多分片", 如果分片了的话, 最后一个分片置为0, 其他是1. 类似于一个结束标记.
  • 13位分片偏移(framegament offset): 是分片相对于原始IP报文开始处的偏移. 其实就是在表示当前分片在原报文中处在哪个位置. 实际偏移的字节数是这个值 * 8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是8的整数倍(否则报文就不连续了).
  • 8位生存时间(Time To Live, TTL): 数据报到达目的地的最大报文跳数. 一般是64. 每次经过一个路由, TTL -= 1, 一直减到0还没到达, 那么就丢弃了. 这个字段主要是用来防止出现路由循环
  • 8位协议: 表示上层协议的类型( 对于任何一个报文,都要解决两件事:①将报头和有效载荷进行分离②将自己的有效载荷交付给上层的哪一个协议
  • 16位头部校验和: 使用CRC进行校验, 来鉴别头部是否损坏. (能更快的识别是否是合格IP报头)
  • 32位源地址和32位目标地址: 表示发送端和接收端.
  • 选项字段(不定长, 最多40字节): 这个就由4位首部长度来决定了

1.1 分片和组装

MTU(最大传输单元):mac帧或者网卡所能承担的最大载荷(这里就是1500字节)。
在这里插入图片描述
在这里插入图片描述

  • 为啥要分片?
    mac帧的有效载荷=ip报头 + ip有效载荷,如果超过了MTU那么就要倒逼着网络层的IP进行分片。来计算一下,如果mac帧的有效载荷为1500字节,那么在标准情况下ip的有效载荷应该为1480字节,那么tcp的有效载荷应该为1460字节(MSS:TCP单个数据报的最大消息长度)。
  • 为啥要组装?
    只有ip层知道报文进行了分片,且别人也不关心。mac帧层只是定了一个协议,不允许有效载荷超过1500字节而已,然而 TCP层传下来的是一个完整的报文,那么在接收的时候也应该拿到一个完整的报文,所以这里要进行组装。
  • 那如何组装呢?
    这里就用到了ip报文中的16位标识,3位标志,13位片偏移。假设收到了很多的ip报文,有的进行了分片,有的则没有,分三步:①把分片的报文挑选出来(3位标志中的第三位,如果是1说明分片了)②把同一组的报文进行归类(16位标识如果相同,说明是同一组)③进行排序组装(通过13位片偏移进行排序即可)

假设现在mac帧的有效载荷为3000字节,如何进行分片?分几片?

  • 应该在网络层(ip)进行分片,应该分3片,而不是2片的1500字节,因为每个分片之后的报文都应该带上一个ip报头。3000字节的时候网络层的有效载荷为2980字节,如果分2片,那么此时两片加起来的有效载荷为1480 * 2 = 2960字节,少了20个字节。所以还需要一片,这一片的有效载荷为20字节。这样才正确的的进行了分片。

分片之后,任何一个分片丢了,那么TCP协议会对整个ip报文进行重传,而不是单纯的只传丢失的分片报文(因为TCP不知道你分片了)。所以分片并不好,要尽量控制长度,不要超过MTU的1500字节。 ip地址分片对于UDP的影响较大。

1.2 硬件设备

在网络层往下开始逐渐的增加了硬件设备。

  • 交换机:划分碰撞域减少碰撞的次数(一块区域发生了碰撞并不影响另一块区域的通信)
  • 集线器:会对传输的信号进行放大。(因为随着距离的增加,信号的传递会衰减)
  • 路由器:数据路由和动态分配IP地址

2. 网段划分

IP地址分为两个部分, 网络号和主机号

  • 网络号: 保证相互连接的两个网段具有不同的标识;
  • 主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号;
  • 不同的子网其实就是把网络号相同的主机放到一起.
  • 如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复

在这里插入图片描述
通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同.

那么问题来了, 手动管理子网内的IP, 是一个相当麻烦的事情.

  • 有一种技术叫做DHCP, 能够自动的给子网内新增主机节点分配IP地址, 避免了手动管理IP的不便.(用了我给你分配,不用的时候我在回收回来)
  • 一般的路由器都带有DHCP功能. 因此路由器也可以看做一个DHCP服务器.

过去曾经提出一种划分网络号和主机号的方案, 把所有IP 地址分为五类, 如下图所示:
在这里插入图片描述
(这是一种粗力度的划分方式,从上表中可以看到他是以第一个一直到第五个bit位是否为0且前面的bit位均为1进行的分类,这种划分方式很不好,因为相当于已经把ip地址给固定化了)

  • A类 0.0.0.0到127.255.255.255
  • B类 128.0.0.0到191.255.255.255
  • C类 192.0.0.0到223.255.255.255
  • D类 224.0.0.0到239.255.255.255
  • E类 240.0.0.0到247.255.255.255

随着Internet的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请B类网络地址, 导致B类地址很快就分配完了, 而A类却浪费了大量地址;

针对这种情况提出了新的划分方案, 称为CIDR(Classless Interdomain Routing):

  • 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;
  • 子网掩码也是一个32位的正整数. 通常用一串 “0” 来结尾;
  • 将IP地址和子网掩码进行 “按位与” 操作, 得到的结果就是网络号;
  • 网络号和主机号的划分与这个IP地址是A类、B类还是C类无关(CIDR的划分方式和和上面的分类方式可以认为毫不相干);

在这里插入图片描述
IP地址与子网掩码做与运算可以得到网络号, 主机号从全0到全1就是子网的地址范围;
IP地址和子网掩码还有一种更简洁的表示方法,例如140.252.20.68/24,表示IP地址为140.252.20.68, 子网掩码的高24位是1,也就是255.255.255.0

2.1 特殊的IP地址

  • 将IP地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网;
  • 将IP地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包;
  • 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1

2.2 IP地址的数量限制

CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率, 减少了浪费, 但是IP地址的绝对上限并没有增加), 仍然不是很够用. 这时候有三种方式来解决:

  • 动态分配IP地址: 只给接入网络的设备分配IP地址. 因此同一个MAC地址的设备, 每次接入互联网中, 得到的IP地址不一定是相同的;
  • IPv6: IPv6并不是IPv4的简单升级版. 这是互不相干的两个协议, 彼此并不兼容; IPv6用16字节128位来表示一个IP地址; 但是目前IPv6还没有普及(真正的从根本上解决问题);
  • NAT技术(下面有详细解释)

3. 私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上 使用任意的IP地址都可以,但是RFC 1918规定了用于组建局域网的私有IP地址

  • 10.*,前8位是网络号,共16,777,216个地址
  • 172.16.到172.31.,前12位是网络号,共1,048,576个地址
  • 192.168.*,前16位是网络号,共65,536个地址
    包含在这个范围中的, 都成为私有IP, 其余的则称为全局IP(或公网IP)
    要想构建一个局域网ip地址那么就必须从这三类中选,且私有IP地址不能出现在公网中)
    在这里插入图片描述
  • 一个路由器可以配置两个IP地址,一个是WAN口IP,一个是LAN口IP (子网IP).
  • 路由器LAN口连接的主机, 都从属于当前这个路由器的子网中.
  • 不同的路由器, 子网IP其实都是一样的(通常都是192.168.1.1). 子网内的主机IP地址不能重复. 但是子网之间的IP地址就可以重复了.
  • 每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点. 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN口IP就是一个公网IP了.
  • 子网内的主机需要和外网进行通信时, 路由器将IP首部中的IP地址进行替换(替换成WAN口IP), 这样逐级替换, 最终数据包中的IP地址成为一个公网IP. 这种技术称为NAT(Network Address Translation,网络地址转换).

1. 所有的客户端请求都必须先经过运营商的中转,然后在才能中转到互联网公司,
2. 所有的请求都必须不断的经过NAT地址转化发到公网当中

4. 路由

路由查找的过程是先查找到目的网络在查找到目标主机

路由的过程, 就是这样一跳一跳(Hop by Hop) “问路” 的过程.
所谓 “一跳” 就是数据链路层中的一个区间. 具体在以太网中指从源MAC地址到目的MAC地址之间的帧传输区间。
在这里插入图片描述
IP数据包的传输过程

  • 当IP数据包, 到达路由器时, 路由器会先查看目的IP;
  • 路由器决定这个数据包是能直接发送给目标主机, 还是需要发送给下一个路由器;
  • 依次反复, 一直到达目标IP地址

那么如何判定当前这个数据包该发送到哪里呢? 这个就依靠每个节点内部维护一个路由表

  • 路由表可以使用route命令查看
  • 如果目的IP的网络号在路由表中, 就直接转发即可;
  • 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址

假设某主机上的网络接口配置和路由表如下:
在这里插入图片描述

  • 这台主机有两个网络接口,一个网络接口连到192.168.10.0/24,另一个网络接口连到192.168.56.0/24网络;
    -路由表的Destination是目的网络地址,Genmask是子网掩码,Gateway是下一跳地址,Iface是发送接口,Flags中的U标志表示此条目有效(可以禁用某些 条目),G标志表示此条目的下一跳地址是某个路由器的地址,没有G标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发;

转发过程例1: 如果要发送的数据包的目的地址是192.168.56.3

  • 跟第一行的子网掩码做与运算得 到192.168.56.0,与第一行的目的网络地址不符再跟第二行的子网掩码做与运算得 到192.168.56.0,正是第二行的目的网络地址,因此从eth1接口发送出去;
  • 由于192.168.56.0/24正是与eth1 接口直接相连的网络,因此可以直接发到目的主机,不需要经路由器转发;

转发过程例2: 如果要发送的数据包的目的地址是202.10.1.2

  • 依次和路由表前几项进行对比, 发现都不匹配;
  • 按缺省路由条目(Destination), 从eth0接口发出去, 发往192.168.10.1路由器; 由192.168.10.1路由器根据它的路由表决定下一跳地址。

这里的default更像是你去问路,XXX怎么去?大爷想了想,还是没有想到这个地方在哪里,他就说了一句你去问一下那个人,他在这一片已经生活了很久了,一定知道怎么去。也就是说虽然他不知道,但是他可以给你提供一个方法,让你能够找到正确的路

5. 重要的协议

5.1 DNS(域名解析)

DNS是一整套从域名映射到IP的系统(属于应用层)
DNS的底层使用的是UDP协议,因为足够简单,如果失败了那就在请求一次。

TCP/IP中使用IP地址和端口号来确定网络上的一台主机的一个程序. 但是IP地址不方便记忆. 于是人们发明了一种叫主机名的东西, 是一个字符串, 并且使用hosts文件来描述主机名和IP地址的关系.
在这里插入图片描述
DNS系统

  • 一个组织的系统管理机构, 维护系统内的每个主机的IP和主机名的对应关系.
  • 如果新计算机接入网络, 将这个信息注册到数据库中;
  • 用户输入域名的时候, 会自动查询DNS服务器, 由DNS服务器检索数据库, 得到对应的IP地址.

至今, 我们的计算机上仍然保留了hosts文件. 在域名解析的过程中仍然会优先查找hosts文件的内容.

cat /etc/hosts
在这里插入图片描述

域名简介
www.baidu.com

域名使用 . 连接

  • com: 一级域名. 表示这是一个企业域名. 同级的还有 “net”(网络提供商), “org”(非盈利组织) 等.
  • baidu: 二级域名, 公司名.
  • www: 只是一种习惯用法. 之前人们在使用域名时, 往往命名成类似于ftp.xxx.xxx/www.xxx.xxx这样的格式, 来表示主机支持的协议.(其实也可以省略掉)

5.2 ICMP协议

ICMP协议是一个网络层协议 (但是和IP具有上下层关系,起到一个诊断的作用

一个新搭建好的网络, 往往需要先进行一个简单的测试, 来验证网络是否畅通; 但是IP协议并不提供可靠传输. 如果丢包了, IP协议并不能通知传输层是否丢包以及丢包的原因.

ICMP正是提供这种功能的协议; ICMP主要功能包括:

  • 确认IP包是否成功到达目标地址.
  • 通知在发送过程中IP包被丢弃的原因.
  • ICMP也是基于IP协议工作的. 但是它并不是传输层的功能, 因此人们仍然把它归结为网络层协议;
  • ICMP只能搭配IPv4使用. 如果是IPv6的情况下, 需要是用ICMPv6;

在这里插入图片描述
IP报文中有一个8位协议,就是要把有效载荷交付给上层哪一个协议,这里就有可能是UDP或TCP还可能是ICMP协议。

ping命令底层使用的就是ICMP协议
在这里插入图片描述

  • 此处 ping 的是域名, 而不是url! 一个域名可以通过DNS解析成IP地址.
  • ping命令不光能验证网络的连通性, 同时也会统计响应时间和TTL(IP包中的Time To Live, 生存周期).
  • ping命令会先发送一个 ICMP Echo Request给对端;
  • 对端接收到之后, 会返回一个ICMP Echo Reply;
    在这里插入图片描述

traceroute命令
也是基于ICMP协议实现, 能够打印出可执行程序主机, 一直到目标主机之前经历多少路由器
在这里插入图片描述

5.3 NAT技术(重要)

IPv4协议中, IP地址数量不充足,NAT技术是当前解决IP地址不够用的主要手段, 是路由器的一个重要功能;

  • NAT能够将私有IP对外通信时转为全局IP. 也就是就是一种将私有IP和全局IP相互转化的技术方法:
  • 很多学校, 家庭, 公司内部采用每个终端设置私有IP, 而在路由器或必要的服务器上设置全局IP;
  • 全局IP要求唯一, 但是私有IP不需要; 在不同的局域网中出现相同的私有IP是完全不影响的;

在这里插入图片描述

  • NAT路由器将源地址从10.0.0.10替换成全局的IP 202.244.174.37;
  • NAT路由器收到外部的数据时, 又会把目标IP从202.244.174.37替换回10.0.0.10;
  • 在NAT路由器内部, 有一张自动生成的, 用于地址转换的表; 当 10.0.0.10 第一次向 163.221.120.9 发送数据时就会生成表中的映射关系;

这种关联关系也是由NAT路由器自动维护的. 例如在TCP的情况下, 建立连接时, 就会生成这个表项; 在断开连接后, 就会删除这个表项。

NAT技术的缺陷

由于NAT依赖这个转换表, 所以有诸多限制:

  • 无法从NAT外部向内部服务器建立连接;
  • 转换表的生成和销毁都需要额外开销;
    通信过程中一旦NAT设备异常, 即使存在热备(备胎), 所有的TCP连接也都会断开;

NAT和代理服务器

路由器往往都具备NAT设备的功能, 通过NAT设备进行中转, 完成子网设备和其他子网设备的通信过程.

代理服务器看起来和NAT设备有一点像. 客户端像代理服务器发送请求, 代理服务器将请求转发给真正要请求的服务器; 服务器返回结果后, 代理服务器又把结果回传给客户端.

那么NAT和代理服务器的区别有哪些呢?

  • 从应用上讲, NAT设备是网络基础设备之一, 解决的是IP不足的问题. 代理服务器则是更贴近具体应用, 比如通过代理服务器进行翻墙, 另外像迅游这样的加速器, 也是使用代理服务器.
  • 从底层实现上讲, NAT是工作在网络层, 直接对IP地址进行替换. 代理服务器往往工作在应用层.
  • 从使用范围上讲, NAT一般在局域网的出口部署, 代理服务器可以在局域网做, 也可以在广域网做, 也可以跨网.
  • 从部署位置上看, NAT一般集成在防火墙, 路由器等硬件设备上, 代理服务器则是一个软件程序, 需要部署在服务器上

代理服务器又分为正向代理和反向代理
简单点说正向代理:客户端像代理服务器发送请求, 代理服务器将请求转发给真正要请求的服务器; 服务器返回结果后, 代理服务器又把结果回传给客户端,反向代理则是:当你有需要的时候就直接找代理服务器,你也不要管代理服务器如何方式获得你要访问的真正服务器,反转你有要求就直接找代理服务器,他就能直接帮你返回你要的结果。

  1. 正向代理用于请求的转发
  2. 反向代理往往作为一个缓存.

标签:IP,IP地址,网络层,---,NAT,主机,分片,路由器
来源: https://blog.csdn.net/MEANSWER/article/details/118667389

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有