ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

pytorch入门学习第七课Seq2Seq, Attention

2021-07-10 19:30:22  阅读:252  来源: 互联网

标签:loss 第七课 Attention iteration Seq2Seq len EOS Epoch size


代码实现
Seq2Seq, Attention¶
褚则伟 zeweichu@gmail.com

在这份notebook当中,我们会(尽可能)复现Luong的attention模型

由于我们的数据集非常小,只有一万多个句子的训练数据,所以训练出来的模型效果并不好。如果大家想训练一个好一点的模型,可以参考下面的资料。

更多阅读
课件
cs224d
论文
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Neural Machine Translation by Jointly Learning to Align and Translate
PyTorch代码
seq2seq-tutorial
Tutorial from Ben Trevett
IBM seq2seq
OpenNMT-py
更多关于Machine Translation
Beam Search
Pointer network 文本摘要
Copy Mechanism 文本摘要
Converage Loss
ConvSeq2Seq
Transformer
Tensor2Tensor
TODO
建议同学尝试对中文进行分词
NER
https://github.com/allenai/allennlp/tree/master/allennlp
import os
import sys
import math
from collections import Counter
import numpy as np
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

import nltk
读入中英文数据

英文我们使用nltk的word tokenizer来分词,并且使用小写字母
中文我们直接使用单个汉字作为基本单元
def load_data(in_file):
cn = []
en = []
num_examples = 0
with open(in_file, ‘r’) as f:
for line in f:
line = line.strip().split("\t")

        en.append(["BOS"] + nltk.word_tokenize(line[0].lower()) + ["EOS"])
        # split chinese sentence into characters
        cn.append(["BOS"] + [c for c in line[1]] + ["EOS"])
return en, cn

train_file = “nmt/en-cn/train.txt”
dev_file = “nmt/en-cn/dev.txt”
train_en, train_cn = load_data(train_file)
dev_en, dev_cn = load_data(dev_file)
构建单词表

UNK_IDX = 0
PAD_IDX = 1
def build_dict(sentences, max_words=50000):
word_count = Counter()
for sentence in sentences:
for s in sentence:
word_count[s] += 1
ls = word_count.most_common(max_words)
total_words = len(ls) + 2
word_dict = {w[0]: index+2 for index, w in enumerate(ls)}
word_dict[“UNK”] = UNK_IDX
word_dict[“PAD”] = PAD_IDX
return word_dict, total_words

en_dict, en_total_words = build_dict(train_en)
cn_dict, cn_total_words = build_dict(train_cn)
inv_en_dict = {v: k for k, v in en_dict.items()}
inv_cn_dict = {v: k for k, v in cn_dict.items()}
把单词全部转变成数字

def encode(en_sentences, cn_sentences, en_dict, cn_dict, sort_by_len=True):
‘’’
Encode the sequences.
‘’’
length = len(en_sentences)
out_en_sentences = [[en_dict.get(w, 0) for w in sent] for sent in en_sentences]
out_cn_sentences = [[cn_dict.get(w, 0) for w in sent] for sent in cn_sentences]

# sort sentences by english lengths
def len_argsort(seq):
    return sorted(range(len(seq)), key=lambda x: len(seq[x]))
   
# 把中文和英文按照同样的顺序排序
if sort_by_len:
    sorted_index = len_argsort(out_en_sentences)
    out_en_sentences = [out_en_sentences[i] for i in sorted_index]
    out_cn_sentences = [out_cn_sentences[i] for i in sorted_index]
    
return out_en_sentences, out_cn_sentences

train_en, train_cn = encode(train_en, train_cn, en_dict, cn_dict)
dev_en, dev_cn = encode(dev_en, dev_cn, en_dict, cn_dict)

train_cn[:10]

k = 10000
print(" “.join([inv_cn_dict[i] for i in train_cn[k]]))
print(” ".join([inv_en_dict[i] for i in train_en[k]]))
BOS 他 来 这 里 的 目 的 是 什 么 ? EOS
BOS for what purpose did he come here ? EOS
把全部句子分成batch

def get_minibatches(n, minibatch_size, shuffle=True):
idx_list = np.arange(0, n, minibatch_size) # [0, 1, …, n-1]
if shuffle:
np.random.shuffle(idx_list)
minibatches = []
for idx in idx_list:
minibatches.append(np.arange(idx, min(idx + minibatch_size, n)))
return minibatches

def prepare_data(seqs):
lengths = [len(seq) for seq in seqs]
n_samples = len(seqs)
max_len = np.max(lengths)

x = np.zeros((n_samples, max_len)).astype('int32')
x_lengths = np.array(lengths).astype("int32")
for idx, seq in enumerate(seqs):
    x[idx, :lengths[idx]] = seq
return x, x_lengths #x_mask

def gen_examples(en_sentences, cn_sentences, batch_size):
minibatches = get_minibatches(len(en_sentences), batch_size)
all_ex = []
for minibatch in minibatches:
mb_en_sentences = [en_sentences[t] for t in minibatch]
mb_cn_sentences = [cn_sentences[t] for t in minibatch]
mb_x, mb_x_len = prepare_data(mb_en_sentences)
mb_y, mb_y_len = prepare_data(mb_cn_sentences)
all_ex.append((mb_x, mb_x_len, mb_y, mb_y_len))
return all_ex

batch_size = 64
train_data = gen_examples(train_en, train_cn, batch_size)
random.shuffle(train_data)
dev_data = gen_examples(dev_en, dev_cn, batch_size)
没有Attention的版本
下面是一个更简单的没有Attention的encoder decoder模型

class PlainEncoder(nn.Module):
def init(self, vocab_size, hidden_size, dropout=0.2):
super(PlainEncoder, self).init()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.rnn = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.dropout = nn.Dropout(dropout)

def forward(self, x, lengths):
    sorted_len, sorted_idx = lengths.sort(0, descending=True)
    x_sorted = x[sorted_idx.long()]
    embedded = self.dropout(self.embed(x_sorted))
    
    packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, sorted_len.long().cpu().data.numpy(), batch_first=True)
    packed_out, hid = self.rnn(packed_embedded)
    out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True)
    _, original_idx = sorted_idx.sort(0, descending=False)
    out = out[original_idx.long()].contiguous()
    hid = hid[:, original_idx.long()].contiguous()
    
    return out, hid[[-1]]

class PlainDecoder(nn.Module):
def init(self, vocab_size, hidden_size, dropout=0.2):
super(PlainDecoder, self).init()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.rnn = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.out = nn.Linear(hidden_size, vocab_size)
self.dropout = nn.Dropout(dropout)

def forward(self, y, y_lengths, hid):
    sorted_len, sorted_idx = y_lengths.sort(0, descending=True)
    y_sorted = y[sorted_idx.long()]
    hid = hid[:, sorted_idx.long()]

    y_sorted = self.dropout(self.embed(y_sorted)) # batch_size, output_length, embed_size

    packed_seq = nn.utils.rnn.pack_padded_sequence(y_sorted, sorted_len.long().cpu().data.numpy(), batch_first=True)
    out, hid = self.rnn(packed_seq, hid)
    unpacked, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
    _, original_idx = sorted_idx.sort(0, descending=False)
    output_seq = unpacked[original_idx.long()].contiguous()

print(output_seq.shape)

    hid = hid[:, original_idx.long()].contiguous()

    output = F.log_softmax(self.out(output_seq), -1)
    
    return output, hid

class PlainSeq2Seq(nn.Module):
def init(self, encoder, decoder):
super(PlainSeq2Seq, self).init()
self.encoder = encoder
self.decoder = decoder

def forward(self, x, x_lengths, y, y_lengths):
    encoder_out, hid = self.encoder(x, x_lengths)
    output, hid = self.decoder(y=y,
                y_lengths=y_lengths,
                hid=hid)
    return output, None

def translate(self, x, x_lengths, y, max_length=10):
    encoder_out, hid = self.encoder(x, x_lengths)
    preds = []
    batch_size = x.shape[0]
    attns = []
    for i in range(max_length):
        output, hid = self.decoder(y=y,
                y_lengths=torch.ones(batch_size).long().to(y.device),
                hid=hid)
        y = output.max(2)[1].view(batch_size, 1)
        preds.append(y)
        
    return torch.cat(preds, 1), None

masked cross entropy loss

class LanguageModelCriterion(nn.Module):
def init(self):
super(LanguageModelCriterion, self).init()

def forward(self, input, target, mask):
    # input: (batch_size * seq_len) * vocab_size
    input = input.contiguous().view(-1, input.size(2))
    # target: batch_size * 1
    target = target.contiguous().view(-1, 1)
    mask = mask.contiguous().view(-1, 1)
    output = -input.gather(1, target) * mask
    output = torch.sum(output) / torch.sum(mask)

    return output

device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
dropout = 0.2
hidden_size = 100
encoder = PlainEncoder(vocab_size=en_total_words,
hidden_size=hidden_size,
dropout=dropout)
decoder = PlainDecoder(vocab_size=cn_total_words,
hidden_size=hidden_size,
dropout=dropout)
model = PlainSeq2Seq(encoder, decoder)
model = model.to(device)
loss_fn = LanguageModelCriterion().to(device)
optimizer = torch.optim.Adam(model.parameters())
def evaluate(model, data):
model.eval()
total_num_words = total_loss = 0.
with torch.no_grad():
for it, (mb_x, mb_x_len, mb_y, mb_y_len) in enumerate(data):
mb_x = torch.from_numpy(mb_x).to(device).long()
mb_x_len = torch.from_numpy(mb_x_len).to(device).long()
mb_input = torch.from_numpy(mb_y[:, :-1]).to(device).long()
mb_output = torch.from_numpy(mb_y[:, 1:]).to(device).long()
mb_y_len = torch.from_numpy(mb_y_len-1).to(device).long()
mb_y_len[mb_y_len<=0] = 1

        mb_pred, attn = model(mb_x, mb_x_len, mb_input, mb_y_len)

        mb_out_mask = torch.arange(mb_y_len.max().item(), device=device)[None, :] < mb_y_len[:, None]
        mb_out_mask = mb_out_mask.float()

        loss = loss_fn(mb_pred, mb_output, mb_out_mask)

        num_words = torch.sum(mb_y_len).item()
        total_loss += loss.item() * num_words
        total_num_words += num_words
print("Evaluation loss", total_loss/total_num_words)

def train(model, data, num_epochs=20):
for epoch in range(num_epochs):
model.train()
total_num_words = total_loss = 0.
for it, (mb_x, mb_x_len, mb_y, mb_y_len) in enumerate(data):
mb_x = torch.from_numpy(mb_x).to(device).long()
mb_x_len = torch.from_numpy(mb_x_len).to(device).long()
mb_input = torch.from_numpy(mb_y[:, :-1]).to(device).long()
mb_output = torch.from_numpy(mb_y[:, 1:]).to(device).long()
mb_y_len = torch.from_numpy(mb_y_len-1).to(device).long()
mb_y_len[mb_y_len<=0] = 1

        mb_pred, attn = model(mb_x, mb_x_len, mb_input, mb_y_len)
        
        mb_out_mask = torch.arange(mb_y_len.max().item(), device=device)[None, :] < mb_y_len[:, None]
        mb_out_mask = mb_out_mask.float()
        
        loss = loss_fn(mb_pred, mb_output, mb_out_mask)
        
        num_words = torch.sum(mb_y_len).item()
        total_loss += loss.item() * num_words
        total_num_words += num_words
        
        # 更新模型
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 5.)
        optimizer.step()
        
        if it % 100 == 0:
            print("Epoch", epoch, "iteration", it, "loss", loss.item())

            
    print("Epoch", epoch, "Training loss", total_loss/total_num_words)
    if epoch % 5 == 0:
        evaluate(model, dev_data)

train(model, train_data, num_epochs=20)
Epoch 0 iteration 0 loss 8.050323486328125
Epoch 0 iteration 100 loss 5.278979301452637
Epoch 0 iteration 200 loss 4.444733619689941
Epoch 0 Training loss 5.433318799975385
Evaluation loss 4.822829000278033
Epoch 1 iteration 0 loss 4.692166805267334
Epoch 1 iteration 100 loss 4.708909511566162
Epoch 1 iteration 200 loss 3.8643922805786133
Epoch 1 Training loss 4.5993410716009135
Epoch 2 iteration 0 loss 4.17959451675415
Epoch 2 iteration 100 loss 4.352121829986572
Epoch 2 iteration 200 loss 3.5356297492980957
Epoch 2 Training loss 4.198561833806036
Epoch 3 iteration 0 loss 3.8728413581848145
Epoch 3 iteration 100 loss 4.134408950805664
Epoch 3 iteration 200 loss 3.303772211074829
Epoch 3 Training loss 3.9386860033522813
Epoch 4 iteration 0 loss 3.64646053314209
Epoch 4 iteration 100 loss 3.947233200073242
Epoch 4 iteration 200 loss 3.1333234310150146
Epoch 4 Training loss 3.745685762442693
Epoch 5 iteration 0 loss 3.481276035308838
Epoch 5 iteration 100 loss 3.827454090118408
Epoch 5 iteration 200 loss 2.9994454383850098
Epoch 5 Training loss 3.5913285724858954
Evaluation loss 3.6815984345855037
Epoch 6 iteration 0 loss 3.3354697227478027
Epoch 6 iteration 100 loss 3.6918392181396484
Epoch 6 iteration 200 loss 2.8618223667144775
Epoch 6 Training loss 3.465248799091302
Epoch 7 iteration 0 loss 3.2224643230438232
Epoch 7 iteration 100 loss 3.5980327129364014
Epoch 7 iteration 200 loss 2.783277988433838
Epoch 7 Training loss 3.357013859409834
Epoch 8 iteration 0 loss 3.141510248184204
Epoch 8 iteration 100 loss 3.5131657123565674
Epoch 8 iteration 200 loss 2.715005397796631
Epoch 8 Training loss 3.2614931554428166
Epoch 9 iteration 0 loss 3.0618908405303955
Epoch 9 iteration 100 loss 3.4437694549560547
Epoch 9 iteration 200 loss 2.5995192527770996
Epoch 9 Training loss 3.1806184197973404
Epoch 10 iteration 0 loss 2.9288880825042725
Epoch 10 iteration 100 loss 3.350996971130371
Epoch 10 iteration 200 loss 2.5103659629821777
Epoch 10 Training loss 3.101915731518774
Evaluation loss 3.393061912401112
Epoch 11 iteration 0 loss 2.874830722808838
Epoch 11 iteration 100 loss 3.3034920692443848
Epoch 11 iteration 200 loss 2.4885127544403076
Epoch 11 Training loss 3.0369929761565384
Epoch 12 iteration 0 loss 2.8056483268737793
Epoch 12 iteration 100 loss 3.2505335807800293
Epoch 12 iteration 200 loss 2.4071717262268066
Epoch 12 Training loss 2.973809002606383
Epoch 13 iteration 0 loss 2.7353591918945312
Epoch 13 iteration 100 loss 3.178480863571167
Epoch 13 iteration 200 loss 2.3422422409057617
Epoch 13 Training loss 2.9169208222083847
Epoch 14 iteration 0 loss 2.6794426441192627
Epoch 14 iteration 100 loss 3.129685401916504
Epoch 14 iteration 200 loss 2.3255887031555176
Epoch 14 Training loss 2.86419656519231
Epoch 15 iteration 0 loss 2.6482393741607666
Epoch 15 iteration 100 loss 3.0710315704345703
Epoch 15 iteration 200 loss 2.2372782230377197
Epoch 15 Training loss 2.8170104509222287
Evaluation loss 3.2708830728055336
Epoch 16 iteration 0 loss 2.567857503890991
Epoch 16 iteration 100 loss 3.0710268020629883
Epoch 16 iteration 200 loss 2.238800525665283
Epoch 16 Training loss 2.771683479683666
Epoch 17 iteration 0 loss 2.5122745037078857
Epoch 17 iteration 100 loss 3.002455472946167
Epoch 17 iteration 200 loss 2.1964993476867676
Epoch 17 Training loss 2.733348611161267
Epoch 18 iteration 0 loss 2.49585223197937
Epoch 18 iteration 100 loss 2.971094846725464
Epoch 18 iteration 200 loss 2.1383423805236816
Epoch 18 Training loss 2.6926882812821322
Epoch 19 iteration 0 loss 2.436241388320923
Epoch 19 iteration 100 loss 2.942230224609375
Epoch 19 iteration 200 loss 2.0685524940490723
Epoch 19 Training loss 2.6545419067862515
def translate_dev(i):
en_sent = " “.join([inv_en_dict[w] for w in dev_en[i]])
print(en_sent)
cn_sent = " “.join([inv_cn_dict[w] for w in dev_cn[i]])
print(””.join(cn_sent))

mb_x = torch.from_numpy(np.array(dev_en[i]).reshape(1, -1)).long().to(device)
mb_x_len = torch.from_numpy(np.array([len(dev_en[i])])).long().to(device)
bos = torch.Tensor([[cn_dict["BOS"]]]).long().to(device)

translation, attn = model.translate(mb_x, mb_x_len, bos)
translation = [inv_cn_dict[i] for i in translation.data.cpu().numpy().reshape(-1)]
trans = []
for word in translation:
    if word != "EOS":
        trans.append(word)
    else:
        break
print("".join(trans))

for i in range(100,120):
translate_dev(i)
print()
BOS you have nice skin . EOS
BOS 你 的 皮 膚 真 好 。 EOS
你必須吃。

BOS you 're UNK correct . EOS
BOS 你 部 分 正 确 。 EOS
你是一个好的。

BOS everyone admired his courage . EOS
BOS 每 個 人 都 佩 服 他 的 勇 氣 。 EOS
每个人都在学习。

BOS what time is it ? EOS
BOS 几 点 了 ? EOS
它什么是谁?

BOS i 'm free tonight . EOS
BOS 我 今 晚 有 空 。 EOS
我很快就會。

BOS here is your book . EOS
BOS 這 是 你 的 書 。 EOS
這是你的。

BOS they are at lunch . EOS
BOS 他 们 在 吃 午 饭 。 EOS
他们有个大学。

BOS this chair is UNK . EOS
BOS 這 把 椅 子 很 UNK 。 EOS
這個房間是一個人的。

BOS it 's pretty heavy . EOS
BOS 它 真 重 。 EOS
它是一個好的。

BOS many attended his funeral . EOS
BOS 很 多 人 都 参 加 了 他 的 葬 礼 。 EOS
許多的人都喜歡茶。

BOS training will be provided . EOS
BOS 会 有 训 练 。 EOS
要下雨。

BOS someone is watching you . EOS
BOS 有 人 在 看 著 你 。 EOS
有人是你的。

BOS i slapped his face . EOS
BOS 我 摑 了 他 的 臉 。 EOS
我認為他的手臂。

BOS i like UNK music . EOS
BOS 我 喜 歡 流 行 音 樂 。 EOS
我喜歡打棒球。

BOS tom had no children . EOS
BOS T o m 沒 有 孩 子 。 EOS
汤姆没有人。

BOS please lock the door . EOS
BOS 請 把 門 鎖 上 。 EOS
請把你的車。

BOS tom has calmed down . EOS
BOS 汤 姆 冷 静 下 来 了 。 EOS
汤姆在花園裡。

BOS please speak more loudly . EOS
BOS 請 說 大 聲 一 點 兒 。 EOS
請稍好喝咖啡。

BOS keep next sunday free . EOS
BOS 把 下 周 日 空 出 来 。 EOS
繼續工作很多。

BOS i made a mistake . EOS
BOS 我 犯 了 一 個 錯 。 EOS
我是一個小孩。

数据全部处理完成,现在我们开始构建seq2seq模型

Encoder
Encoder模型的任务是把输入文字传入embedding层和GRU层,转换成一些hidden states作为后续的context vectors
class Encoder(nn.Module):
def init(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2):
super(Encoder, self).init()
self.embed = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size, enc_hidden_size, batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(enc_hidden_size * 2, dec_hidden_size)

def forward(self, x, lengths):
    sorted_len, sorted_idx = lengths.sort(0, descending=True)
    x_sorted = x[sorted_idx.long()]
    embedded = self.dropout(self.embed(x_sorted))
    
    packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, sorted_len.long().cpu().data.numpy(), batch_first=True)
    packed_out, hid = self.rnn(packed_embedded)
    out, _ = nn.utils.rnn.pad_packed_sequence(packed_out, batch_first=True)
    _, original_idx = sorted_idx.sort(0, descending=False)
    out = out[original_idx.long()].contiguous()
    hid = hid[:, original_idx.long()].contiguous()
    
    hid = torch.cat([hid[-2], hid[-1]], dim=1)
    hid = torch.tanh(self.fc(hid)).unsqueeze(0)

    return out, hid

Luong Attention
根据context vectors和当前的输出hidden states,计算输出
class Attention(nn.Module):
def init(self, enc_hidden_size, dec_hidden_size):
super(Attention, self).init()

    self.enc_hidden_size = enc_hidden_size
    self.dec_hidden_size = dec_hidden_size

    self.linear_in = nn.Linear(enc_hidden_size*2, dec_hidden_size, bias=False)
    self.linear_out = nn.Linear(enc_hidden_size*2 + dec_hidden_size, dec_hidden_size)
    
def forward(self, output, context, mask):
    # output: batch_size, output_len, dec_hidden_size
    # context: batch_size, context_len, 2*enc_hidden_size

    batch_size = output.size(0)
    output_len = output.size(1)
    input_len = context.size(1)
    
    context_in = self.linear_in(context.view(batch_size*input_len, -1)).view(                
        batch_size, input_len, -1) # batch_size, context_len, dec_hidden_size
    
    # context_in.transpose(1,2): batch_size, dec_hidden_size, context_len 
    # output: batch_size, output_len, dec_hidden_size
    attn = torch.bmm(output, context_in.transpose(1,2)) 
    # batch_size, output_len, context_len

    attn.data.masked_fill(mask, -1e6)

    attn = F.softmax(attn, dim=2) 
    # batch_size, output_len, context_len

    context = torch.bmm(attn, context) 
    # batch_size, output_len, enc_hidden_size
    
    output = torch.cat((context, output), dim=2) # batch_size, output_len, hidden_size*2

    output = output.view(batch_size*output_len, -1)
    output = torch.tanh(self.linear_out(output))
    output = output.view(batch_size, output_len, -1)
    return output, attn

Decoder
decoder会根据已经翻译的句子内容,和context vectors,来决定下一个输出的单词
class Decoder(nn.Module):
def init(self, vocab_size, embed_size, enc_hidden_size, dec_hidden_size, dropout=0.2):
super(Decoder, self).init()
self.embed = nn.Embedding(vocab_size, embed_size)
self.attention = Attention(enc_hidden_size, dec_hidden_size)
self.rnn = nn.GRU(embed_size, hidden_size, batch_first=True)
self.out = nn.Linear(dec_hidden_size, vocab_size)
self.dropout = nn.Dropout(dropout)

def create_mask(self, x_len, y_len):
    # a mask of shape x_len * y_len
    device = x_len.device
    max_x_len = x_len.max()
    max_y_len = y_len.max()
    x_mask = torch.arange(max_x_len, device=x_len.device)[None, :] < x_len[:, None]
    y_mask = torch.arange(max_y_len, device=x_len.device)[None, :] < y_len[:, None]
    mask = (1 - x_mask[:, :, None] * y_mask[:, None, :]).byte()
    return mask

def forward(self, ctx, ctx_lengths, y, y_lengths, hid):
    sorted_len, sorted_idx = y_lengths.sort(0, descending=True)
    y_sorted = y[sorted_idx.long()]
    hid = hid[:, sorted_idx.long()]
    
    y_sorted = self.dropout(self.embed(y_sorted)) # batch_size, output_length, embed_size

    packed_seq = nn.utils.rnn.pack_padded_sequence(y_sorted, sorted_len.long().cpu().data.numpy(), batch_first=True)
    out, hid = self.rnn(packed_seq, hid)
    unpacked, _ = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
    _, original_idx = sorted_idx.sort(0, descending=False)
    output_seq = unpacked[original_idx.long()].contiguous()
    hid = hid[:, original_idx.long()].contiguous()

    mask = self.create_mask(y_lengths, ctx_lengths)

    output, attn = self.attention(output_seq, ctx, mask)
    output = F.log_softmax(self.out(output), -1)
    
    return output, hid, attn

Seq2Seq
最后我们构建Seq2Seq模型把encoder, attention, decoder串到一起
class Seq2Seq(nn.Module):
def init(self, encoder, decoder):
super(Seq2Seq, self).init()
self.encoder = encoder
self.decoder = decoder

def forward(self, x, x_lengths, y, y_lengths):
    encoder_out, hid = self.encoder(x, x_lengths)
    output, hid, attn = self.decoder(ctx=encoder_out, 
                ctx_lengths=x_lengths,
                y=y,
                y_lengths=y_lengths,
                hid=hid)
    return output, attn

def translate(self, x, x_lengths, y, max_length=100):
    encoder_out, hid = self.encoder(x, x_lengths)
    preds = []
    batch_size = x.shape[0]
    attns = []
    for i in range(max_length):
        output, hid, attn = self.decoder(ctx=encoder_out, 
                ctx_lengths=x_lengths,
                y=y,
                y_lengths=torch.ones(batch_size).long().to(y.device),
                hid=hid)
        y = output.max(2)[1].view(batch_size, 1)
        preds.append(y)
        attns.append(attn)
    return torch.cat(preds, 1), torch.cat(attns, 1)

训练

dropout = 0.2
embed_size = hidden_size = 100
encoder = Encoder(vocab_size=en_total_words,
embed_size=embed_size,
enc_hidden_size=hidden_size,
dec_hidden_size=hidden_size,
dropout=dropout)
decoder = Decoder(vocab_size=cn_total_words,
embed_size=embed_size,
enc_hidden_size=hidden_size,
dec_hidden_size=hidden_size,
dropout=dropout)
model = Seq2Seq(encoder, decoder)
model = model.to(device)
loss_fn = LanguageModelCriterion().to(device)
optimizer = torch.optim.Adam(model.parameters())
train(model, train_data, num_epochs=30)
Epoch 0 iteration 0 loss 8.078022003173828
Epoch 0 iteration 100 loss 5.414377689361572
Epoch 0 iteration 200 loss 4.643333435058594
Epoch 0 Training loss 5.485134587536152
Evaluation loss 5.067514630874862
Epoch 1 iteration 0 loss 4.940210342407227
Epoch 1 iteration 100 loss 4.9903435707092285
Epoch 1 iteration 200 loss 4.186498641967773
Epoch 1 Training loss 4.877356682952294
Epoch 2 iteration 0 loss 4.509239196777344
Epoch 2 iteration 100 loss 4.570853233337402
Epoch 2 iteration 200 loss 3.7934508323669434
Epoch 2 Training loss 4.453642889638262
Epoch 3 iteration 0 loss 4.11014986038208
Epoch 3 iteration 100 loss 4.230580806732178
Epoch 3 iteration 200 loss 3.4451844692230225
Epoch 3 Training loss 4.105205834096106
Epoch 4 iteration 0 loss 3.788179397583008
Epoch 4 iteration 100 loss 3.984476089477539
Epoch 4 iteration 200 loss 3.205059289932251
Epoch 4 Training loss 3.8313639103406314
Epoch 5 iteration 0 loss 3.572876214981079
Epoch 5 iteration 100 loss 3.7907521724700928
Epoch 5 iteration 200 loss 3.0604655742645264
Epoch 5 Training loss 3.61275750220716
Evaluation loss 3.6225900108158475
Epoch 6 iteration 0 loss 3.331376552581787
Epoch 6 iteration 100 loss 3.607234239578247
Epoch 6 iteration 200 loss 2.8438034057617188
Epoch 6 Training loss 3.4240881394610914
Epoch 7 iteration 0 loss 3.1553823947906494
Epoch 7 iteration 100 loss 3.4283368587493896
Epoch 7 iteration 200 loss 2.679870367050171
Epoch 7 Training loss 3.2619650765874195
Epoch 8 iteration 0 loss 3.0175576210021973
Epoch 8 iteration 100 loss 3.313087224960327
Epoch 8 iteration 200 loss 2.573970079421997
Epoch 8 Training loss 3.119750910546451
Epoch 9 iteration 0 loss 2.8687644004821777
Epoch 9 iteration 100 loss 3.2016961574554443
Epoch 9 iteration 200 loss 2.4501001834869385
Epoch 9 Training loss 2.9937007481445184
Epoch 10 iteration 0 loss 2.7964212894439697
Epoch 10 iteration 100 loss 3.094231128692627
Epoch 10 iteration 200 loss 2.2865397930145264
Epoch 10 Training loss 2.879919764606877
Evaluation loss 3.164760209368642
Epoch 11 iteration 0 loss 2.6683473587036133
Epoch 11 iteration 100 loss 3.008727788925171
Epoch 11 iteration 200 loss 2.1880834102630615
Epoch 11 Training loss 2.7794466071573467
Epoch 12 iteration 0 loss 2.5640454292297363
Epoch 12 iteration 100 loss 2.896376132965088
Epoch 12 iteration 200 loss 2.1036128997802734
Epoch 12 Training loss 2.684113484535982
Epoch 13 iteration 0 loss 2.520007371902466
Epoch 13 iteration 100 loss 2.8189423084259033
Epoch 13 iteration 200 loss 2.0698890686035156
Epoch 13 Training loss 2.5990255668547055
Epoch 14 iteration 0 loss 2.42832612991333
Epoch 14 iteration 100 loss 2.7819204330444336
Epoch 14 iteration 200 loss 1.923954725265503
Epoch 14 Training loss 2.5176252404633574
Epoch 15 iteration 0 loss 2.360988140106201
Epoch 15 iteration 100 loss 2.6843974590301514
Epoch 15 iteration 200 loss 1.912152886390686
Epoch 15 Training loss 2.4463321701504275
Evaluation loss 2.9698491313827047
Epoch 16 iteration 0 loss 2.2877912521362305
Epoch 16 iteration 100 loss 2.6055469512939453
Epoch 16 iteration 200 loss 1.8231658935546875
Epoch 16 Training loss 2.3756549535366713
Epoch 17 iteration 0 loss 2.191697597503662
Epoch 17 iteration 100 loss 2.5865063667297363
Epoch 17 iteration 200 loss 1.7817124128341675
Epoch 17 Training loss 2.313343924902058
Epoch 18 iteration 0 loss 2.1245803833007812
Epoch 18 iteration 100 loss 2.525496482849121
Epoch 18 iteration 200 loss 1.672200322151184
Epoch 18 Training loss 2.2498218108556114
Epoch 19 iteration 0 loss 2.06477427482605
Epoch 19 iteration 100 loss 2.443316698074341
Epoch 19 iteration 200 loss 1.6326298713684082
Epoch 19 Training loss 2.19988960411091
Epoch 20 iteration 0 loss 2.0234487056732178
Epoch 20 iteration 100 loss 2.416968822479248
Epoch 20 iteration 200 loss 1.583616852760315
Epoch 20 Training loss 2.1513965044733827
Evaluation loss 2.8699020465835643
Epoch 21 iteration 0 loss 2.008730411529541
Epoch 21 iteration 100 loss 2.3642444610595703
Epoch 21 iteration 200 loss 1.5385680198669434
Epoch 21 Training loss 2.098746986360735
Epoch 22 iteration 0 loss 1.910429835319519
Epoch 22 iteration 100 loss 2.339489459991455
Epoch 22 iteration 200 loss 1.4784246683120728
Epoch 22 Training loss 2.051404798098097
Epoch 23 iteration 0 loss 1.8959044218063354
Epoch 23 iteration 100 loss 2.2653536796569824
Epoch 23 iteration 200 loss 1.4792706966400146
Epoch 23 Training loss 2.00636701965731
Epoch 24 iteration 0 loss 1.8477107286453247
Epoch 24 iteration 100 loss 2.1904118061065674
Epoch 24 iteration 200 loss 1.3925689458847046
Epoch 24 Training loss 1.965628425139225
Epoch 25 iteration 0 loss 1.7790645360946655
Epoch 25 iteration 100 loss 2.182420492172241
Epoch 25 iteration 200 loss 1.3576843738555908
Epoch 25 Training loss 1.9238889035465652
Evaluation loss 2.826008448512912
Epoch 26 iteration 0 loss 1.73543381690979
Epoch 26 iteration 100 loss 2.1740329265594482
Epoch 26 iteration 200 loss 1.328704595565796
Epoch 26 Training loss 1.889945533318946
Epoch 27 iteration 0 loss 1.7498269081115723
Epoch 27 iteration 100 loss 2.1384894847869873
Epoch 27 iteration 200 loss 1.277467966079712
Epoch 27 Training loss 1.852515173441663
Epoch 28 iteration 0 loss 1.6980342864990234
Epoch 28 iteration 100 loss 2.1195883750915527
Epoch 28 iteration 200 loss 1.2595137357711792
Epoch 28 Training loss 1.8210893462516964
Epoch 29 iteration 0 loss 1.6773594617843628
Epoch 29 iteration 100 loss 2.0760860443115234
Epoch 29 iteration 200 loss 1.2345834970474243
Epoch 29 Training loss 1.7873437400435428
for i in range(100,120):
translate_dev(i)
print()
BOS you have nice skin . EOS
BOS 你 的 皮 膚 真 好 。 EOS
你好害怕。

BOS you 're UNK correct . EOS
BOS 你 部 分 正 确 。 EOS
你是全子的声音。

BOS everyone admired his courage . EOS
BOS 每 個 人 都 佩 服 他 的 勇 氣 。 EOS
他的袋子是他的勇氣。

BOS what time is it ? EOS
BOS 几 点 了 ? EOS
多少时间是什么?

BOS i 'm free tonight . EOS
BOS 我 今 晚 有 空 。 EOS
我今晚有空。

BOS here is your book . EOS
BOS 這 是 你 的 書 。 EOS
这儿是你的书。

BOS they are at lunch . EOS
BOS 他 们 在 吃 午 饭 。 EOS
他们在午餐。

BOS this chair is UNK . EOS
BOS 這 把 椅 子 很 UNK 。 EOS
這些花一下是正在的。

BOS it 's pretty heavy . EOS
BOS 它 真 重 。 EOS
它很美的脚。

BOS many attended his funeral . EOS
BOS 很 多 人 都 参 加 了 他 的 葬 礼 。 EOS
多多衛年轻地了他。

BOS training will be provided . EOS
BOS 会 有 训 练 。 EOS
别将被付錢。

BOS someone is watching you . EOS
BOS 有 人 在 看 著 你 。 EOS
有人看你。

BOS i slapped his face . EOS
BOS 我 摑 了 他 的 臉 。 EOS
我把他的臉抱歉。

BOS i like UNK music . EOS
BOS 我 喜 歡 流 行 音 樂 。 EOS
我喜歡音樂。

BOS tom had no children . EOS
BOS T o m 沒 有 孩 子 。 EOS
汤姆没有照顧孩子。

BOS please lock the door . EOS
BOS 請 把 門 鎖 上 。 EOS
请把門開門。

BOS tom has calmed down . EOS
BOS 汤 姆 冷 静 下 来 了 。 EOS
汤姆在做了。

BOS please speak more loudly . EOS
BOS 請 說 大 聲 一 點 兒 。 EOS
請說更多。

BOS keep next sunday free . EOS
BOS 把 下 周 日 空 出 来 。 EOS
繼續下週一下一步。

BOS i made a mistake . EOS
BOS 我 犯 了 一 個 錯 。 EOS
我做了一件事。

标签:loss,第七课,Attention,iteration,Seq2Seq,len,EOS,Epoch,size
来源: https://blog.csdn.net/weixin_43857576/article/details/118639367

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有