ICode9

精准搜索请尝试: 精确搜索
首页 > 数据库> 文章详细

Redis必知必会之zset底层—Skip List跳跃列表(面试加分项)

2021-12-22 01:03:14  阅读:225  来源: 互联网

标签:Node zset level 必知 Skip List score 节点


 

 

一、简介
跳表全称叫做跳跃表,简称跳表。跳表是一个随机化的数据结构,实质就是一种可以进行二分查找的有序链表。跳表在原有的有序链表上面增加了多级索引,通过索引来实现快速查找。跳表不仅能提高搜索性能,同时也可以提高插入和删除操作的性能。


Skip List(跳跃列表)这种随机的数据结构,可以看做是一个二叉树的变种,它在性能上与红黑树、AVL树很相近;但是Skip List(跳跃列表)的实现相比前两者要简单很多,目前Redis的zset实现采用了Skip List(跳跃列表)(其它还有LevelDB等也使用了跳跃列表)。

RBT红黑树与Skip List(跳跃列表)简单对比:
RBT红黑树

插入、查询时间复杂度O(logn)
数据天然有序
实现复杂,设计变色、左旋右旋平衡等操作
需要加锁
Skip List跳跃列表

插入、查询时间复杂度O(logn)
数据天然有序
实现简单,链表结构
无需加锁

二、Skip List算法分析
2.1 Skip List论文
这里贴出Skip List的论文,需要详细研究的请看论文,下文部分公式、代码、图片出自该论文。
_Skip Lists: A Probabilistic Alternative to Balanced Trees _

https://www.cl.cam.ac.uk/teaching/2005/Algorithms/skiplists.pdf


2.2 Skip List动态图
先通过一张动图来了解Skip List的插入节点元素的流程,此图来自维基百科。


2.3 Skip List算法性能分析
2.3.1 计算随机层数算法
首先分析的是执行插入操作时计算随机数的过程,这个过程会涉及层数的计算,所以十分重要。对于节点他有如下特性:

节点都有第一层的指针
节点有第i层指针,那么第i+1层出现的概率为p
节点有最大层数限制,MaxLevel

计算随机层数的伪代码:
论文中的示例


Java版本

public int randomLevel(){
int level = 1;
// random()返回一个[0...1)的随机数
while (random() < p && level < MaxLevel){
level += 1;
}
return level;
}
1
2
3
4
5
6
7
8
代码中包含两个变量P和MaxLevel,在Redis中这两个参数的值分别是:

p = 1/4
MaxLevel = 64
1
2

2.3.2 节点包含的平均指针数目
Skip List属于空间换时间的数据结构,这里的空间指的就是每个节点包含的指针数目,这一部分是额外的内内存开销,可以用来度量空间复杂度。random()是个随机数,因此产生越高的节点层数,概率越低(Redis标准源码中的晋升率数据1/4,相对来说Skip List的结构是比较扁平的,层高相对较低)。其定量分析如下:

level = 1 概率为1-p
level >=2 概率为p
level = 2 概率为p(1-p)
level >= 3 概率为p^2
level = 3 概率为p^2(1-p)
level >=4 概率为p^3
level = 4 概率为p^3(1-p)
……
得出节点的平均层数(节点包含的平均指针数目):

所以Redis中p=1/4计算的平均指针数目为1.33

2.3.3 时间复杂度计算
以下推算来自论文内容
假设p=1/2,在以p=1/2生成的16个元素的跳过列表中,我们可能碰巧具有9个元素,1级3个元素,3个元素3级元素和1个元素14级(这不太可能,但可能会发生)。我们该怎么处理这种情况?如果我们使用标准算法并在第14级开始我们的搜索,我们将会做很多无用的工作。那么我们应该从哪里开始搜索?此时我们假设SkipList中有n个元素,第L层级元素个数的期望是1/p个;每个元素出现在L层的概率是p^(L-1), 那么第L层级元素个数的期望是 n * (p^L-1);得到1 / p =n * (p^L-1)

1 / p = n * (p^L-1)
n = (1/p)^L
L = log(1/p)^n
1
2
3
所以我们应该选择MaxLevel = log(1/p)^n
定义:MaxLevel = L(n) = log(1/p)^n

推算Skip List的时间复杂度,可以用逆向思维,从层数为i的节点x出发,返回起点的方式来回溯时间复杂度,节点x点存在两种情况:

节点x存在(i+1)层指针,那么向上爬一级,概率为p,对应下图situation c.
节点x不存在(i+1)层指针,那么向左爬一级,概率为1-p,对应下图situation b.

设C(k) = 在无限列表中向上攀升k个level的搜索路径的预期成本(即长度)那么推演如下:

C(0)=0
C(k)=(1-p)×(情况b的查找长度) + p×(情况c的查找长度)
C(k)=(1-p)(C(k)+1) + p(C(k-1)+1)
C(k)=1/p+C(k-1)
C(k)=k/p
1
2
3
4
5
上面推演的结果可知,爬升k个level的预期长度为k/p,爬升一个level的长度为1/p。

由于MaxLevel = L(n), C(k) = k / p,因此期望值为:(L(n) – 1) / p;将L(n) = log(1/p)^n 代入可得:(log(1/p)^n - 1) / p;将p = 1 / 2 代入可得:2 * log2^n - 2,即O(logn)的时间复杂度。


三、Skip List特性及其实现
2.1 Skip List特性
Skip List跳跃列表通常具有如下这些特性

Skip List包含多个层,每层称为一个level,level从0开始递增
Skip List 0层,也就是最底层,应该包含所有的元素
每一个level/层都是一个有序的列表
level小的层包含level大的层的元素,也就是说元素A在X层出现,那么 想X>Z>=0的level/层都应该包含元素A
每个节点元素由节点key、节点value和指向当前节点所在level的指针数组组成

2.2 Skip List查询
假设初始Skip List跳跃列表中已经存在这些元素,他们分布的结构如下所示:

此时查询节点88,它的查询路线如下所示:


从Skip List跳跃列表最顶层level3开始,往后查询到10 < 88 && 后续节点值为null && 存在下层level2
level2 10往后遍历,27 < 88 && 后续节点值为null && 存在下层level1
level1 27往后遍历,88 = 88,查询命中

2.3 Skip List插入
Skip List的初始结构与2.3中的初始结构一致,此时假设插入的新节点元素值为90,插入路线如下所示:

查询插入位置,与Skip List查询方式一致,这里需要查询的是第一个比90大的节点位置,插入在这个节点的前面, 88 < 90 < 100
构造一个新的节点Node(90),为插入的节点Node(90)计算一个随机level,这里假设计算的是1,这个level时随机计算的,可能时1、2、3、4…均有可能,level越大的可能越小,主要看随机因子x ,层数的概率大致计算为 (1/x)^level ,如果level大于当前的最大level3,需要新增head和tail节点
节点构造完毕后,需要将其插入列表中,插入十分简单步骤 -> Node(88).next = Node(90); Node(90).prev = Node(80); Node(90).next = Node(100); Node(100).prev = Node(90);


2.4 Skip List删除
删除的流程就是查询到节点,然后删除,重新将删除节点左右两边的节点以链表的形式组合起来即可,这里不再画图


四、手写实现一个简单Skip List
实现一个Skip List比较简单,主要分为两个步骤:

定义Skip List的节点Node,节点之间以链表的形式存储,因此节点持有相邻节点的指针,其中prev与next是同一level的前后节点的指针,down与up是同一节点的多个level的上下节点的指针
定义Skip List的实现类,包含节点的插入、删除、查询,其中查询操作分为升序查询和降序查询(往后和往前查询),这里实现的Skip List默认节点之间的元素是升序链表
3.1 定义Node节点
Node节点类主要包括如下重要属性:

score -> 节点的权重,这个与Redis中的score相同,用来节点元素的排序作用
value -> 节点存储的真实数据,只能存储String类型的数据
prev -> 当前节点的前驱节点,同一level
next -> 当前节点的后继节点,同一level
down -> 当前节点的下层节点,同一节点的不同level
up -> 当前节点的上层节点,同一节点的不同level
package com.liziba.skiplist;

/**
* <p>
* 跳表节点元素
* </p>
*
* @Author: Liziba
* @Date: 2021/7/5 21:01
*/
public class Node {

/** 节点的分数值,根据分数值来排序 */
public Double score;
/** 节点存储的真实数据 */
public String value;
/** 当前节点的 前、后、下、上节点的引用 */
public Node prev, next, down, up;

public Node(Double score) {
this.score = score;
prev = next = down = up = null;
}

public Node(Double score, String value) {
this.score = score;
this.value = value;
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3.2 SkipList节点元素的操作类
SkipList主要包括如下重要属性:

head -> SkipList中的头节点的最上层头节点(level最大的层的头节点),这个节点不存储元素,是为了构建列表和查询时做查询起始位置的,具体的结构请看2.3中的结构
tail -> SkipList中的尾节点的最上层尾节点(level最大的层的尾节点),这个节点也不存储元素,是查询某一个level的终止标志
level -> 总层数
size -> Skip List中节点元素的个数
random -> 用于随机计算节点level,如果 random.nextDouble() < 1/2则需要增加当前节点的level,如果当前节点增加的level超过了总的level则需要增加head和tail(总level)
package com.liziba.skiplist;

import java.util.Random;

/**
* <p>
* 跳表实现
* </p>
*
* @Author: Liziba
*/
public class SkipList {

/** 最上层头节点 */
public Node head;
/** 最上层尾节点 */
public Node tail;
/** 总层数 */
public int level;
/** 元素个数 */
public int size;
public Random random;

public SkipList() {
level = size = 0;
head = new Node(null);
tail = new Node(null);
head.next = tail;
tail.prev = head;
}

/**
* 查询插入节点的前驱节点位置
*
* @param score
* @return
*/
public Node fidePervNode(Double score) {
Node p = head;
for(;;) {
// 当前层(level)往后遍历,比较score,如果小于当前值,则往后遍历
while (p.next.value == null && p.prev.score <= score)
p = p.next;
// 遍历最右节点的下一层(level)
if (p.down != null)
p = p.down;
else
break;
}
return p;
}

/**
* 插入节点,插入位置为fidePervNode(Double score)前面
*
* @param score
* @param value
*/
public void insert(Double score, String value) {

// 当前节点的前置节点
Node preNode = fidePervNode(score);
// 当前新插入的节点
Node curNode = new Node(score, value);
// 分数和值均相等则直接返回
if (curNode.value != null && preNode.value != null && preNode.value.equals(curNode.value)
&& curNode.score.equals(preNode.score)) {
return;
}

preNode.next = curNode;
preNode.next.prev = curNode;
curNode.next = preNode.next;
curNode.prev = preNode;

int curLevel = 0;
while (random.nextDouble() < 1/2) {
// 插入节点层数(level)大于等于层数(level),则新增一层(level)
if (curLevel >= level) {
Node newHead = new Node(null);
Node newTail = new Node(null);
newHead.next = newTail;
newHead.down = head;
newTail.prev = newHead;
newTail.down = tail;
head.up = newHead;
tail.up = newTail;
// 头尾节点指针修改为新的,确保head、tail指针一直是最上层的头尾节点
head = newHead;
tail = newTail;
++level;
}

while (preNode.up == null)
preNode = preNode.prev;

preNode = preNode.up;

Node copy = new Node(null);
copy.prev = preNode;
copy.next = preNode.next;
preNode.next.prev = copy;
preNode.next = copy;
copy.down = curNode;
curNode.up = copy;
curNode = copy;

++curLevel;
}
++size;
}

/**
* 查询指定score的节点元素
* @param score
* @return
*/
public Node search(double score) {
Node p = head;
for (;;) {
while (p.next.score != null && p.next.score <= score)
p = p.next;
if (p.down != null)
p = p.down;
else // 遍历到最底层
if (p.score.equals(score))
return p;
return null;
}
}

/**
* 升序输出Skip List中的元素 (默认升序存储,因此从列表head往tail遍历)
*/
public void dumpAllAsc() {
Node p = head;
while (p.down != null) {
p = p.down;
}
while (p.next.score != null) {
System.out.println(p.next.score + "-->" + p.next.value);
p = p.next;
}
}

/**
* 降序输出Skip List中的元素
*/
public void dumpAllDesc() {
Node p = tail;
while (p.down != null) {
p = p.down;
}
while (p.prev.score != null) {
System.out.println(p.prev.score + "-->" + p.prev.value);
p = p.prev;
}
}


/**
* 删除Skip List中的节点元素
* @param score
*/
public void delete(Double score) {
Node p = search(score);
while (p != null) {
p.prev.next = p.next;
p.next.prev = p.prev;
p = p.up;
}
}


}
————————————————
版权声明:本文为CSDN博主「李子捌」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_41125219/article/details/118532559

标签:Node,zset,level,必知,Skip,List,score,节点
来源: https://www.cnblogs.com/arielmeng/p/15717814.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有