ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【算法学习笔记】筛法(算法翻译类)

2021-04-19 22:01:11  阅读:234  来源: 互联网

标签:frac 筛法 int sum pri 笔记 ln 算法


本节部分内容译自博文 Решето Эратосфена 与其英文翻译版 Sieve of Eratosthenes。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。

素数筛法

如果我们想要知道小于等于 \(n\) 有多少个素数呢?

一个自然的想法是对于小于等于 \(n\) 的每个数进行一次质数检验。这种暴力的做法显然不能达到最优复杂度。

埃拉托斯特尼筛法

考虑这样一件事情:如果 \(x\) 是合数,那么 \(x\) 的倍数也一定是合数。利用这个结论,我们可以避免很多次不必要的检测。

如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。

int Eratosthenes(int n) {
    int p = 0;
    for (int i = 0; i <= n; ++i) is_prime[i] = 1;
    is_prime[0] = is_prime[1] = 0;
    for (int i = 2; i <= n; ++i) {
        if (is_prime[i]) {
            prime[p++] = i; // prime[p]是i,后置自增运算代表当前素数数量
            if ((long long)i * i <= n)
                for (int j = i * i; j <= n; j += i)
                    // 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
                    // 的倍数开始,提高了运行速度
                    is_prime[j] = 0; // 是i的倍数的均不是素数
        }
    }
    return p;
}

以上为 Eratosthenes 筛法(埃拉托斯特尼筛法,简称埃氏筛法),时间复杂度是 \(O(n\log\log n)\)。

怎么证明这个复杂度呢?我们先列出复杂度的数学表达式。

发现数学表达式显然就是素数的倒数和乘上 \(n\),即 \(n\sum_p {\frac{1}{p}}\)。

我们相当于要证明 \(\sum_p {\frac{1}{p}}\) 是 \(O(\log\log n)\) 的。我们考虑一个很巧妙的构造来证明这个式子是 \(O(\log\log n)\) 的:

证明:

注意到调和级数 \(\sum_n {\frac{1}{n}}=\ln n\)。

而又由唯一分解定理可得:\(\sum_n {\frac{1}{n}}=\prod_p {(1+\frac{1}{p}+\frac{1}{p^2}+\cdots)}=\prod_p {\frac{p}{p-1}}\)。

我们两边同时取 \(\ln\),得:

\[\begin{aligned} \ln \sum_n {\frac{1}{n}}&=\ln \prod_p {\frac{p}{p-1}}\\ \ln\ln n&=\sum_p {(\ln p-\ln {(p-1)})} \end{aligned} \]

又发现 \(\int {\frac{1}{x}dx}=\ln x\),所以由微积分基本定理:

\[\sum_p {(\ln p-\ln {(p-1)})}=\sum_p {\int_{p-1}^p {\frac{1}{x}dx}} \]

画图可以发现,\(\int_{p-1}^p {\frac{1}{x}dx}>\frac{1}{p}\),所以:

\[\ln\ln n=\sum_p {\int_{p-1}^p {\frac{1}{x}dx}}>\sum_p {\frac{1}{p}} \]

所以 \(\sum_p {\frac{1}{p}}\) 是 \(O(\log\log n)\) 的,所以 Eratosthenes 筛法 的复杂度是 \(O(n\log\log n)\) 的。

当然,上面的做法效率仍然不够高效,应用下面几种方法可以稍微提高算法的执行效率。

筛至平方根

显然,要找到直到 \(n\) 为止的所有素数,仅对不超过 \(\sqrt n\) 的素数进行筛选就足够了。

vector<char> is_prime(n + 1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= n; i++) {
    if (is_prime[i]) 
        for (int j = i * i; j <= n; j += i) 
            is_prime[j] = false;
}

这种优化不会影响渐进时间复杂度,实际上重复以上证明,我们将得到 \(n \ln \ln \sqrt n + o(n)\),根据对数的性质,它们的渐进相同,但操作次数会明显减少。

只筛奇数

因为除 2 以外的偶数都是合数,所以我们可以直接跳过它们,只用关心奇数就好。

首先,这样做能让我们内存需求减半;其次,所需的操作大约也减半。

减少内存的占用

我们注意到筛法只需要 \(n\) 比特的内存。因此我们可以通过将变量声明为布尔类型,只申请 \(n\) 比特而不是 \(n\) 字节的内存,来显著的减少内存占用。即仅占用 \(\dfrac n 8\) 字节的内存。

但是,这种称为 位级压缩 的方法会使这些位的操作复杂化。任何位上的读写操作都需要多次算术运算,最终会使算法变慢。

因此,这种方法只有在 \(n\) 特别大,以至于我们不能再分配内存时才合理。在这种情况下,我们将牺牲效率,通过显著降低算法速度以节省内存(减小 8 倍)。

值得一提的是,存在自动执行位级压缩的数据结构,如 C++ 中的 vector<bool>bitset<>

分块筛选

由优化“筛至平方根”可知,不需要一直保留整个 is_prime[1...n] 数组。为了进行筛选,只保留到 \(\sqrt n\) 的素数就足够了,即 prime[1...sqrt(n)]。并将整个范围分成块,每个块分别进行筛选。这样,我们就不必同时在内存中保留多个块,而且 CPU 可以更好地处理缓存。

设 \(s\) 是一个常数,它决定了块的大小,那么我们就有了 \(\lceil {\frac n s} \rceil\) 个块,而块 \(k\)(\(k = 0 ... \lfloor {\frac n s} \rfloor\)) 包含了区间 \([ks; ks + s - 1]\) 中的数字。我们可以依次处理块,也就是说,对于每个块 \(k\),我们将遍历所有质数(从 \(1\) 到 \(\sqrt n\))并使用它们进行筛选。

值得注意的是,我们在处理第一个数字时需要稍微修改一下策略:首先,应保留 \([1; \sqrt n]\) 中的所有的质数;第二,数字 \(0\) 和 \(1\) 应该标记为非素数。在处理最后一个块时,不应该忘记最后一个数字 \(n\) 并不一定位于块的末尾。

以下实现使用块筛选来计算小于等于 \(n\) 的质数数量。

int count_primes(int n) {
    const int S = 10000;
    vector<int> primes;
    int nsqrt = sqrt(n);
    vector<char> is_prime(nsqrt + 1, true);
    for (int i = 2; i <= nsqrt; i++) {
        if (is_prime[i]) {
            primes.push_back(i);
            for (int j = i * i; j <= nsqrt; j += i) is_prime[j] = false;
        }
    }
    int result = 0;
    vector<char> block(S);
    for (int k = 0; k * S <= n; k++) {
        fill(block.begin(), block.end(), true);
        int start = k * S;
        for (int p : primes) {
            int start_idx = (start + p - 1) / p;
            int j         = max(start_idx, p) * p - start;
            for (; j < S; j += p) block[j] = false;
        }
        if (k == 0) block[0] = block[1] = false;
        for (int i = 0; i < S && start + i <= n; i++) {
            if (block[i]) result++;
        }
    }
    return result;
}

分块筛分的渐进时间复杂度与埃氏筛法是一样的(除非块非常小),但是所需的内存将缩小为 \(O(\sqrt{n} + S)\),并且有更好的缓存结果。
另一方面,对于每一对块和区间 \([1, \sqrt{n}]\) 中的素数都要进行除法,而对于较小的块来说,这种情况要糟糕得多。
因此,在选择常数 \(S\) 时要保持平衡。

块大小 \(S\) 取 \(10^4\) 到 \(10^5\) 之间,可以获得最佳的速度。

线性筛法

埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。

如果能让每个合数都只被标记一次,那么时间复杂度就可以降到 \(O(n)\) 了。

void init() {
    phi[1] = 1;
    for (int i = 2; i < MAXN; ++i) {
        if (!vis[i]) {
            phi[i]     = i - 1;
            pri[cnt++] = i;
        }
        for (int j = 0; j < cnt; ++j) {
            if (1ll * i * pri[j] >= MAXN) break;
            vis[i * pri[j]] = 1;
            if (i % pri[j]) {
                phi[i * pri[j]] = phi[i] * (pri[j] - 1);
            } else {
                // i % pri[j] == 0
                // 换言之,i 之前被 pri[j] 筛过了
                // 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是
                // pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break
                // 掉就好了
                phi[i * pri[j]] = phi[i] * pri[j];
                break;
            }
        }
    }
}

上面代码中的 \(phi\) 数组,会在下面提到。

上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)。

注意到筛法求素数的同时也得到了每个数的最小质因子

筛法求欧拉函数

注意到在线性筛中,每一个合数都是被最小的质因子筛掉。比如设 \(p_1\) 是 \(n\) 的最小质因子,\(n' = \frac{n}{p_1}\),那么线性筛的过程中 \(n\) 通过 \(n' \times p_1\) 筛掉。

观察线性筛的过程,我们还需要处理两个部分,下面对 \(n' \bmod p_1\) 分情况讨论。

如果 \(n' \bmod p_1 = 0\),那么 \(n'\) 包含了 \(n\) 的所有质因子。

\[\begin{aligned} \varphi(n) & = n \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\ & = p_1 \times n' \times \prod_{i = 1}^s{\frac{p_i - 1}{p_i}} \\\\ & = p_1 \times \varphi(n') \end{aligned} \]

那如果 \(n' \bmod p_1 \neq 0\) 呢,这时 \(n'\) 和 \(p_1\) 是互质的,根据欧拉函数性质,我们有:

\[\begin{aligned} \varphi(n) & = \varphi(p_1) \times \varphi(n') \\\\ & = (p_1 - 1) \times \varphi(n') \end{aligned} \]

void phi_table(int n, int *phi) {
    for (int i = 2; i <= n; i++) phi[i] = 0;
    phi[1] = 1;
    for (int i = 2; i <= n; i++)
        if (!phi[i])
            for (int j = i; j <= n; j += i) {
                if (!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
}

筛法求莫比乌斯函数

线性筛

void pre() {
    mu[1] = 1;
    for (int i = 2; i <= 1e7; ++i) {
        if (!v[i]) mu[i] = -1, p[++tot] = i;
        for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
            v[i * p[j]] = 1;
            if (i % p[j] == 0) {
                mu[i * p[j]] = 0;
                break;
            }
            mu[i * p[j]] = -mu[i];
        }
    }
}

筛法求约数个数

用 \(d_i\) 表示 \(i\) 的约数个数,\(num_i\) 表示 \(i\) 的最小质因子出现次数。

约数个数定理

定理:若 \(n=\prod_{i=1}^mp_i^{c_i}\) 则 \(d_i=\prod_{i=1}^mc_i+1\).

证明:我们知道 \(p_i^{c_i}\) 的约数有 \(p_i^0,p_i^1,\dots ,p_i^{c_i}\) 共 \(c_i+1\) 个,根据乘法原理,\(n\) 的约数个数就是 \(\prod_{i=1}^mc_i+1\).

实现

因为 \(d_i\) 是积性函数,所以可以使用线性筛。

void pre() {
    d[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
        for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
            v[p[j] * i] = 1;
            if (i % p[j] == 0) {
                num[i * p[j]] = num[i] + 1;
                d[i * p[j]]   = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
                break;
            } else {
                num[i * p[j]] = 1;
                d[i * p[j]]   = d[i] * 2;
            }
        }
    }
}

筛法求约数和

\(f_i\) 表示 \(i\) 的约数和,\(g_i\) 表示 \(i\) 的最小质因子的 \(p+p^1+p^2+\dots p^k\).

void pre() {
    g[1] = f[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
        for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
            v[p[j] * i] = 1;
            if (i % p[j] == 0) {
                g[i * p[j]] = g[i] * p[j] + 1;
                f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
                break;
            } else {
                f[i * p[j]] = f[i] * f[p[j]];
                g[i * p[j]] = 1 + p[j];
            }
        }
    }
    for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod;
}

其他线性函数

待补

标签:frac,筛法,int,sum,pri,笔记,ln,算法
来源: https://www.cnblogs.com/RioTian/p/14678821.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有