ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

Gauss消元法的原理及Java实现

2020-09-18 22:01:09  阅读:589  来源: 互联网

标签:Java 方程组 int double System Gauss ++ static 元法


补充知识:

 

要理解Gauss消去法,首先来看一个例子:

从上例子可以看出,高斯消去法实际上就是我们初中学的阶二元一次方程组,只不过那里的未知数个数$n=2$

$n>2$时,Gauss消去法的思路实际上和解二元一次方程组是一样的,方法如下:

  • 将$n$方程组中的$n-1$个方程通过消元,形成一个与原方程组等价的一个新方程组,新方程组中的$n-1$个方程仅包含$n-1$个未知数。
  • 故问题就转化为了求解$n-1$元的方程组,这样我们可以继续消元,以次类推,直到最后一个方程组为一元一次方程组
  • 从最后一个一元一次方程组求解出最后一个未知量,然后逐步回代入之前的方程组,从而得到所有的未知数。
  • 我们可以看到Gauss实际上就分为两步:消去和回代

下面通过一般化得到Gauss消元法的求解过程

 

 

以上就是Gauss消去法的基本步骤,我们再回过头看看有没有什么问题?

我们在求比例$l_{ik}= \frac{a_{ik}^{\left (k-1  \right )}}{a_{kk}^{\left (k-1  \right )}}$时,如果分母很小,即:

 

$l_{ik}\rightarrow \infty$,那么

总结一下,能否使用Gauss消元法的情况

为了解决这个问题,我们可以使用列主元Gauss消元法。

参考了一些网上的代码,这里给出Gauss的Java实现

 

package peterxiazhe;

import java.util.Scanner;

public class Gauss {
    /**
     * 列主元高斯消去法
     */
    static double A[][];
    static double b[];
    static double x[];
    
    static int n;    //n表示未知数的个数
    static int n_2;    //记录换行的次数
    
    public static void main(String[] args) {
        System.out.println("--------------输入方程组未知数的个数---------------");
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        
        A = new double[n][n];
        b = new double[n];
        x = new double[n];
        
        System.out.println("--------------输入方程组的系数矩阵A:---------------");
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) {
                A[i][j] = sc.nextDouble();
            }
        }
        
        System.out.println("--------------输入方程组的常量向量b:---------------");
        for(int i = 0; i < n; i++) {
                b[i] = sc.nextDouble();
            }
        
        Elimination();
        BackSubstitution();
        PrintRoot();
    }
    
    
    //消元法
    public static void Elimination() {
        PrintA();
        for(int k = 0; k < n; k++) {
            WrapRow(k);
            for(int i = k+1; i < n; i++) {
                double l = A[i][k] / A[k][k];
                A[i][k] = 0;
                
                for(int j = k+1; j < n; j++) {
                    A[i][j] = A[i][j] - l * A[k][j];
                }
                b[i] = b[i] - l * b[k];
            }
            //System.out.println("第" + k + "次消元后:");
            //PrintA();
        }
    }
    
    //回代法
    public static void    BackSubstitution() {
        x[n-1] = b[n-1] / A[n-1][n-1];
        for(int i = n - 2; i >= 0; i--) {
            x[i] = (b[i] - solve(i)) / A[i][i];
        }
    }
    
    public static double solve(int i) {
        double result = 0.0;
        for(int j = i; j < n; j++)
            result += A[i][j] * x[j];
        return result;
    }
    
    
    //输出方程组的根
    public static void PrintRoot() {
        System.out.println("--------------方程组的根为---------------");
        for(int  i = 0; i < n; i++) {
            System.out.println("x" + (i+1) + " = " + x[i]);
        }
    }
    
    //交换Swap函数???
    public static void Swap(double[] ar, int x, int y) {
        Double tmp = ar[x];
        ar[x] = ar[y];
        ar[y] = tmp;
    }
    
    public static void PrintA() {    //输出A的增广矩阵
        //System.out.println("--------------增广矩阵---------------");
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) {
                System.out.print(A[i][j] + " ");
            }
            System.out.println(b[i]);
        }
    }
    
    //交换矩阵的行
    public static void WrapRow(int k) {    //k表示第k+1轮消元
        double maxElement = Math.abs(A[k][k]);
        
        int WrapRowIndex = k;    //    记住要交换的行
        for(int i = k + 1; i < n; i++) {
            if (Math.abs(A[i][k]) > maxElement) {
                WrapRowIndex = i;
                maxElement = A[i][k];
            }
        }
        if (WrapRowIndex != k) {    //交换求得最大主元
            n_2 += 1;
            System.out.println("k = " + k + "时," + "要交换的行为" + k + "和"+ WrapRowIndex);
            
            //先交换A
            for(int j = k; j < n; j++) {
                double[] arr = {A[k][j], A[WrapRowIndex][j]};
                Swap(arr, 0, 1);
                A[k][j] = arr[0]; A[WrapRowIndex][j] = arr[1];
//                double tmp = A[k][j];
//                A[k][j] = A[WrapRowIndex][j];
//                A[WrapRowIndex][j] = tmp;
            }
            
            //再交换b
            double[] arr = {b[k], b[WrapRowIndex]};
            Swap(arr, 0, 1);
            b[k] = arr[0]; b[WrapRowIndex] = arr[1];
//            double tmp = b[k];
//            b[k] = b[WrapRowIndex];
//            b[WrapRowIndex] = tmp;
            System.out.println("--------------交换后---------------");
            PrintA();
        }        
    }
}

 

标签:Java,方程组,int,double,System,Gauss,++,static,元法
来源: https://www.cnblogs.com/xiazhenbin/p/13692242.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有