标签:python pandas ipython ipython-notebook merge
我正在尝试合并两个数据框,一个包含列:customerId,全名和电子邮件,另一个数据框包含列:customerId,amount和date.我想让第一个数据帧成为主数据帧,并包含其他数据帧信息,但仅限于customerIds匹配时;我试过做:
merge = pd.merge(df, df2, on='customerId', how='left')
但是生成的数据框包含大量重复并且看起来不对:
customerId full name emails amount date
0 002963338 Star shine star.shine@cdw.com $2,910.94 2016-06-14
1 002963338 Star shine star.shine@cdw.com $9,067.70 2016-05-27
2 002963338 Star shine star.shine@cdw.com $6,507.24 2016-04-12
3 002963338 Star shine star.shine@cdw.com $1,457.99 2016-02-24
4 986423367 palm tree tree.palm@snapchat.com,tree@.com $4,604.83 2016-07-16
这不行,请帮忙!
解决方法:
在customerId列中存在重复的问题.
因此解决方案是删除它们,例如到drop_duplicates
:
df2 = df2.drop_duplicates('customerId')
样品:
df = pd.DataFrame({'customerId':[1,2,1,1,2], 'full name':list('abcde')})
print (df)
customerId full name
0 1 a
1 2 b
2 1 c
3 1 d
4 2 e
df2 = pd.DataFrame({'customerId':[1,2,1,2,1,1], 'full name':list('ABCDEF')})
print (df2)
customerId full name
0 1 A
1 2 B
2 1 C
3 2 D
4 1 E
5 1 F
merge = pd.merge(df, df2, on='customerId', how='left')
print (merge)
customerId full name_x full name_y
0 1 a A
1 1 a C
2 1 a E
3 1 a F
4 2 b B
5 2 b D
6 1 c A
7 1 c C
8 1 c E
9 1 c F
10 1 d A
11 1 d C
12 1 d E
13 1 d F
14 2 e B
15 2 e D
df2 = df2.drop_duplicates('customerId')
merge = pd.merge(df, df2, on='customerId', how='left')
print (merge)
customerId full name_x full name_y
0 1 a A
1 2 b B
2 1 c A
3 1 d A
4 2 e B
标签:python,pandas,ipython,ipython-notebook,merge 来源: https://codeday.me/bug/20191002/1845206.html
本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享; 2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关; 3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关; 4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除; 5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。