ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

脚踏实地的Netty源码研究笔记——开篇

2022-05-20 17:32:53  阅读:175  来源: 互联网

标签:Netty 开篇 public 源码 promise new cause final channel


1. 脚踏实地的Netty源码研究笔记(1)——开篇

1.1. Netty介绍

Netty是一个老牌的高性能网络框架。在众多开源框架中都有它的身影,比如:grpc、dubbo、seata等。

里面有着非常多值得学的东西:

  • I/O模型

  • 内存管理

  • 各种网络协议的实现:http、redis、websocket等等

  • 各种各样有趣的技巧的实现:异步、时间轮、池化、内存泄露探测等等。

  • 代码风格、设计思想、设计原则等。

1.2. 源码分析方法

我一般是这样进行源码分析的:

  1. 首先是纵向,通过官方提供的demo,进行debug,并记录在一个完整的生命周期下的调用链上,会涉及到哪些组件。

  2. 然后对涉及到的组件拿出来,找出它们的顶层定义(接口、抽象类)。通过其模块/包的划分类注释定义的方法及其注释,来大致知晓每个组件是做什么的,以及它们在整个框架中的位置是怎样的。

  3. 第二步完成后,就可以对第一步的调用链流程、步骤、涉及到的组件,进行归纳、划分,从而做到心中有数,知道东南西北了。

  4. 之后就是横向,对这些归纳出来的组件体系,逐个进行分析。

  5. 在分析每个组件体系的时候,也是按照先纵向,再横向的步骤:

    1. 首先是纵向:找出该组件体系中的核心顶层接口、类,然后结合其的所有实现类,捋出继承树,然后弄清楚每个类做的是啥,它是怎么定义的,同一层级的不同实现类之间的区别大致是什么,必要的话,可以将这个继承树记下来,在心中推算几遍。

    2. 然后是横向:将各个类有选择性地拿出来分析。

当然,所谓的纵向,横向,这两个过程实际是互相交织的,也就是说整个流程不一定就分为前后两半:前面一半都是纵向,后面一半都是横向。

通过纵向的分析,我们能发现整个框架可以分成大致哪几个部分,以及有

1.3. 分析前的准备

  1. 首先在本地建一个对应的分析学习用的项目,比如:learn_netty,用maven管理依赖
  2. 然后在maven仓库,中找到我们需要的依赖,比如这里我用的是最新的:
<!-- https://mvnrepository.com/artifact/io.netty/netty-all -->
<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.77.Final</version>
</dependency>
  1. 将官方提供的demo代码,导入到项目中。
  2. 学习项目搭建好之后,就尝试编译、运行,没问题后,就命令行mvn dependency:sources命令(或者通过IDE)来下载依赖的源代码。
  3. 可选:在github上,将项目同时clone到本地,如果分析中发现问题或者自己有些优化建议,可以尝试为分析的项目贡献代码。

1.4. 分析示例的代码

以一个简单的EchoServer、EchoClient来研究。

public class EchoServer {
    private final int port;

    public EchoServer(int port) {
        this.port = port;
    }

    public static void main(String[] args) throws Exception {
        new EchoServer(8083).start();
    }

    public void start() throws Exception {
        final EchoServerHandler serverHandler = new EchoServerHandler();
        EventLoopGroup group = new NioEventLoopGroup();
        try {
            ServerBootstrap b = new ServerBootstrap();
            b.group(group)
                    .channel(NioServerSocketChannel.class)
                    .localAddress(new InetSocketAddress(port))
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        public void initChannel(SocketChannel ch) {
                            ch.pipeline().addLast(serverHandler);
                        }
                    });

            ChannelFuture f = b.bind().sync();
            f.channel().closeFuture().sync();
        } finally {
            group.shutdownGracefully().sync();
        }
    }
public class EchoServerHandler extends ChannelInboundHandlerAdapter {

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) {
        ByteBuf in = (ByteBuf) msg;
        System.out.println("Server received: " + in.toString(CharsetUtil.UTF_8));
        ctx.write(in);
    }

    @Override
    public void channelReadComplete(ChannelHandlerContext ctx) {
        ctx.writeAndFlush(Unpooled.EMPTY_BUFFER)
                .addListener(ChannelFutureListener.CLOSE);
    }

    @Override
    public void exceptionCaught(ChannelHandlerContext ctx,
                                Throwable cause) {
        cause.printStackTrace();
        ctx.close();
    }
public class EchoClient {
    public static void main(String[] args) throws Exception {
        connect("127.0.0.1", 8083);
    }

    public static void connect(String host, int port) throws Exception {
        NioEventLoopGroup group = new NioEventLoopGroup();
        Bootstrap bootstrap = new Bootstrap();
        try {
            bootstrap.group(group)
                    .channel(NioSocketChannel.class).remoteAddress(new InetSocketAddress(host, port))
                    .handler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) {
                            ch.pipeline().addLast(new EchoClientHandler());
                        }
                    });
            ChannelFuture f = bootstrap.connect();
            f.channel().closeFuture().sync();
        } finally {
            group.shutdownGracefully();
        }
    }
}
public class EchoClientHandler extends SimpleChannelInboundHandler<ByteBuf> {
    @Override
    public void channelRegistered(ChannelHandlerContext ctx) throws Exception {
        super.channelRegistered(ctx);
    }

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        ctx.writeAndFlush(Unpooled.copiedBuffer("Netty Sockets!", CharsetUtil.UTF_8));
    }

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) throws Exception {
        System.out.println(msg.toString(CharsetUtil.UTF_8));
    }
}

1.5. 开始分析

分别启动EchoServer、EchoClient,在两个ChannelFuture的位置打断点。

1.5.1. EchoServer启动调用链

进入ServerBootstrapbind方法,发现该方法定义在父类AbstractBootstrap中:

    public ChannelFuture bind() {
        validate();
        SocketAddress localAddress = this.localAddress;
        if (localAddress == null) {
            throw new IllegalStateException("localAddress not set");
        }
        return doBind(localAddress);
    }

接着来看doBind方法,发现也在AbstractBootstrap中:

    private ChannelFuture doBind(final SocketAddress localAddress) {
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();
        if (regFuture.cause() != null) {
            return regFuture;
        }

        if (regFuture.isDone()) {
            // At this point we know that the registration was complete and successful.
            ChannelPromise promise = channel.newPromise();
            doBind0(regFuture, channel, localAddress, promise);
            return promise;
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

发现doBind中主要做了两件事:

  1. initAndRegister(初始化Channel并注册到EventLoop中),这个操作是异步操作,立即返回该操作对应的句柄。

  2. 拿到initAndRegister操作的句柄后,对其进行检查。

    1. 如果initAndRegister已完成那么立即进行doBind0操作(实际的bind操作),并返回doBind0操作对应的句柄。

    2. 如果initAndRegister还没有完成,那么就将doBind0操作异步化:initAndRegister操作完成后再触发doBind0

然后我们先看initAndRegister,它同样在AbstractBootstrap中:

    final ChannelFuture initAndRegister() {
        Channel channel = null;
        try {
            channel = channelFactory.newChannel();
            init(channel);
        } catch (Throwable t) {
            if (channel != null) {
                // channel can be null if newChannel crashed (eg SocketException("too many open files"))
                channel.unsafe().closeForcibly();
                // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
                return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
            }
            // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
            return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
        }

        ChannelFuture regFuture = config().group().register(channel);
        if (regFuture.cause() != null) {
            if (channel.isRegistered()) {
                channel.close();
            } else {
                channel.unsafe().closeForcibly();
            }
        }

        // If we are here and the promise is not failed, it's one of the following cases:
        // 1) If we attempted registration from the event loop, the registration has been completed at this point.
        //    i.e. It's safe to attempt bind() or connect() now because the channel has been registered.
        // 2) If we attempted registration from the other thread, the registration request has been successfully
        //    added to the event loop's task queue for later execution.
        //    i.e. It's safe to attempt bind() or connect() now:
        //         because bind() or connect() will be executed *after* the scheduled registration task is executed
        //         because register(), bind(), and connect() are all bound to the same thread.

        return regFuture;
    }

忽略对异常的处理,看到有三个步骤:

  1. 使用工厂创建一个channel

  2. 对这个channel进行init:由子类实现。

  3. 将创建的channel注册(register)到EventLoopGroup中,异步操作,将该操作对应的句柄返回。

看完了initAndRegister后,在回来看doBind0

    private static void doBind0(
            final ChannelFuture regFuture, final Channel channel,
            final SocketAddress localAddress, final ChannelPromise promise) {

        // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up
        // the pipeline in its channelRegistered() implementation.
        channel.eventLoop().execute(new Runnable() {
            @Override
            public void run() {
                if (regFuture.isSuccess()) {
                    channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                } else {
                    promise.setFailure(regFuture.cause());
                }
            }
        });
    }

发现在doBind0中,最终是通过调用channelbind方法来完成的。而这个动作是包裹成了一个任务,提交给了channel所注册到的eventloop,由它来执行。

1.5.2. EchoClient启动调用链

首先进入Bootstrapconnect方法中:

    public ChannelFuture connect() {
        validate();
        SocketAddress remoteAddress = this.remoteAddress;
        if (remoteAddress == null) {
            throw new IllegalStateException("remoteAddress not set");
        }

        return doResolveAndConnect(remoteAddress, config.localAddress());
    }

同样忽略validate,直接看doResolveAndConnect

    private ChannelFuture doResolveAndConnect(final SocketAddress remoteAddress, final SocketAddress localAddress) {
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();

        if (regFuture.isDone()) {
            if (!regFuture.isSuccess()) {
                return regFuture;
            }
            return doResolveAndConnect0(channel, remoteAddress, localAddress, channel.newPromise());
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    // Directly obtain the cause and do a null check so we only need one volatile read in case of a
                    // failure.
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();
                        doResolveAndConnect0(channel, remoteAddress, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

我们发现Bootstrap::doResolveAndConnectAbstractBootstrap::doBind类似。意思也是说,在initAndRegister完成channel的创建、初始化、绑定到EventLoop之后再进行实际的操作doResolveAndConnect0

于是我们来看doResolveAndConnect0:


    private ChannelFuture doResolveAndConnect0(final Channel channel, SocketAddress remoteAddress,
                                               final SocketAddress localAddress, final ChannelPromise promise) {
        try {
            final EventLoop eventLoop = channel.eventLoop();
            AddressResolver<SocketAddress> resolver;
            try {
                resolver = this.resolver.getResolver(eventLoop);
            } catch (Throwable cause) {
                channel.close();
                return promise.setFailure(cause);
            }

            if (!resolver.isSupported(remoteAddress) || resolver.isResolved(remoteAddress)) {
                // Resolver has no idea about what to do with the specified remote address or it's resolved already.
                doConnect(remoteAddress, localAddress, promise);
                return promise;
            }

            final Future<SocketAddress> resolveFuture = resolver.resolve(remoteAddress);

            if (resolveFuture.isDone()) {
                final Throwable resolveFailureCause = resolveFuture.cause();

                if (resolveFailureCause != null) {
                    // Failed to resolve immediately
                    channel.close();
                    promise.setFailure(resolveFailureCause);
                } else {
                    // Succeeded to resolve immediately; cached? (or did a blocking lookup)
                    doConnect(resolveFuture.getNow(), localAddress, promise);
                }
                return promise;
            }

            // Wait until the name resolution is finished.
            resolveFuture.addListener(new FutureListener<SocketAddress>() {
                @Override
                public void operationComplete(Future<SocketAddress> future) throws Exception {
                    if (future.cause() != null) {
                        channel.close();
                        promise.setFailure(future.cause());
                    } else {
                        doConnect(future.getNow(), localAddress, promise);
                    }
                }
            });
        } catch (Throwable cause) {
            promise.tryFailure(cause);
        }
        return promise;
    }

我们可以看出,doResolveAndConnect0正如其名:

  1. 首先获取channel所绑定的eventloop所对应的AddressResolver(从AddressResolverGroup)中拿。
  2. 拿到AddressResolver之后,如果它不知道该怎么处理给定的需要连接的地址,或者说这个地址已经被其解析过,那么就直接doConnect。否则使用AddressResolver来解析需要连接的地址(异步操作),并将doConnect操作异步化。

先暂时忽略AddressResolver,我们来看doConnect

    private static void doConnect(
            final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise connectPromise) {

        // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up
        // the pipeline in its channelRegistered() implementation.
        final Channel channel = connectPromise.channel();
        channel.eventLoop().execute(new Runnable() {
            @Override
            public void run() {
                if (localAddress == null) {
                    channel.connect(remoteAddress, connectPromise);
                } else {
                    channel.connect(remoteAddress, localAddress, connectPromise);
                }
                connectPromise.addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            }
        });
    }

我们看到doConnect和之前的doBind0一样,最终也是调用channel的方法,并且将实际的执行交给channel绑定的eventloop来执行。

1.6. 总结

就目前debug的调用链上,我们发现涉及到的组件有:

  • Bootstrap系列:脚手架,提供给开发人员使用,类似Spring的ApplicationContext
  • Channel系列:连接通道
  • EventLoopGroup、EventLoop系列:执行器与事件驱动循环,IO模型。
  • AddressResolverGroup、AddressResolver系列:地址解析器
  • netty自定义的Future、Promise相关:异步化的基础

我们发现netty的操作全程是异步化的,并且最终要解开其原理的庐山真面目,关键还在于提及的eventloop、channel。

此阶段的纵向分析,目前只解开一隅,待我们看看eventloop、channel后,再来解开更大的谜题。

标签:Netty,开篇,public,源码,promise,new,cause,final,channel
来源: https://www.cnblogs.com/stepfortune/p/16293102.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有