ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

SVM基本概念及Python实现代码

2022-02-25 23:04:49  阅读:294  来源: 互联网

标签:SVM Python support 基本概念 plt 超平面 线性 clf


SVM(support vector machine)支持向量机:

注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界) ,另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好。),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚。

线性分类:

先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样:

这种方法被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如,三维的超平面是面。但是有个问题:

上述两种超平面,都可以将数据进行分类,由此可推出,其实能有无数个超平面能将数据划分,但是哪条最优呢?

最大间隔分类器Maximum Margin Classifier:

简称MMH, 对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。

用以生成支持向量的点,如上图XO,被称为支持向量点,因此SVM有一个优点,就是即使有大量的数据,但是支持向量点是固定的,因此即使再次训练大量数据,这个超平面也可能不会变化。

非线性分类:

数据大多数情况都不可能是线性的,那如何分割非线性数据呢?

解决方法是将数据放到高维度上再进行分割,如下图:

当f(x)=x时,这组数据是个直线,如上半部分,但是当我把这组数据变为f(x)=x^2时,这组数据就变成了下半部分的样子,也就可以被红线所分割。

比如说,我这里有一组三维的数据X=(x1,x2,x3),线性不可分割,因此我需要将他转换到六维空间去。因此我们可以假设六个维度分别是:x1,x2,x3,x1^2,x1*x2,x1*x3,当然还能继续展开,但是六维的话这样就足够了。

新的决策超平面:d(Z)=WZ+b,解出W和b后带入方程,因此这组数据的超平面应该是:d(Z)=w1x1+w2x2+w3x3+w4*x1^2+w5x1x2+w6x1x3+b但是又有个新问题,转换高纬度一般是以内积(dot product)的方式进行的,但是内积的算法复杂度非常大。

核函数Kernel:

我们会经常遇到线性不可分的样例,此时,我们的常用做法是把样例特征映射到高维空间中去。但进一步,如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小是会高到可怕的,而且内积方式复杂度太大。此时,核函数就隆重登场了,核函数的价值在于它虽然也是讲特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表现在了高维上,也就如上文所说的避免了直接在高维空间中的复杂计算。

几种常用核函数:

h度多项式核函数(Polynomial Kernel of Degree h)

高斯径向基和函数(Gaussian radial basis function Kernel)

S型核函数(Sigmoid function Kernel)

图像分类,通常使用高斯径向基和函数,因为分类较为平滑,文字不适用高斯径向基和函数。没有标准的答案,可以尝试各种核函数,根据精确度判定。

松弛变量:

数据本身可能有噪点,会使得原本线性可分的数据需要映射到高维度去。对于这种偏离正常位置很远的数据点,我们称之为 outlier ,在我们原来的 SVM 模型里,outlier 的存在有可能造成很大的影响,因为超平面本身就是只有少数几个 support vector 组成的,如果这些 support vector 里又存在 outlier 的话,其影响就很大了。

因此排除outlier点,可以相应的提高模型准确率和避免Overfitting的方式。

解决多分类问题:

经典的SVM只给出了二类分类的算法,现实中数据可能需要解决多类的分类问题。因此可以多次运行SVM,产生多个超平面,如需要分类1-10种产品,首先找到1和2-10的超平面,再寻找2和1,3-10的超平面,以此类推,最后需要测试数据时,按照相应的距离或者分布判定。

SVM与其他机器学习算法对比(图):

Python实现方式:

线性,基础:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from sklearn import svm

  

x = [[2,0,1],[1,1,2],[2,3,3]]

y = [0,0,1] #分类标记

clf = svm.SVC(kernel = 'linear') #SVM模块,svc,线性核函数

clf.fit(x,y)

  

print(clf)

  

print(clf.support_vectors_) #支持向量点

  

print(clf.support_) #支持向量点的索引

  

print(clf.n_support_) #每个class有几个支持向量点

  

print(clf.predict([2,0,3])) #预测

线性,展示图:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

from sklearn import svm

import numpy as np

import matplotlib.pyplot as plt

  

np.random.seed(0)

x = np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]] #正态分布来产生数字,20行2列*2

y = [0]*20+[1]*20 #20个class0,20个class1

  

clf = svm.SVC(kernel='linear')

clf.fit(x,y)

  

w = clf.coef_[0] #获取w

a = -w[0]/w[1] #斜率

#画图划线

xx = np.linspace(-5,5) #(-5,5)之间x的值

yy = a*xx-(clf.intercept_[0])/w[1] #xx带入y,截距

  

#画出与点相切的线

b = clf.support_vectors_[0]

yy_down = a*xx+(b[1]-a*b[0])

b = clf.support_vectors_[-1]

yy_up = a*xx+(b[1]-a*b[0])

  

print("W:",w)

print("a:",a)

  

print("support_vectors_:",clf.support_vectors_)

print("clf.coef_:",clf.coef_)

  

plt.figure(figsize=(8,4))

plt.plot(xx,yy)

plt.plot(xx,yy_down)

plt.plot(xx,yy_up)

plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80)

plt.scatter(x[:,0],x[:,1],c=y,cmap=plt.cm.Paired) #[:,0]列切片,第0列

  

plt.axis('tight')

  

plt.show()

文章来源:https://www.jb51.net/article/131580.htm

标签:SVM,Python,support,基本概念,plt,超平面,线性,clf
来源: https://blog.csdn.net/dfly_zx/article/details/123142743

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有