ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

ACO 蚁群算法(算法流程,TSP例子解析)

2022-02-06 22:00:44  阅读:241  来源: 互联网

标签:蚂蚁 迭代 Route ACO Length iter 算法 citys 蚁群


1. 算法背景——蚁群的自组织行为特征

高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。

自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。

信息正反馈——蚂蚁在寻找食物时,在其经过的路径上释放信息素(外激素)。蚂蚁基本没有视觉,但能在小范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度高的方向移动。

自催化行为——某条路径上走过的蚂蚁越多,留下的信息素也越多(随时间蒸发一部分),后来蚂蚁选择该路径的概率也越高。

2. 算法基本思想:

(1)根据具体问题设置多只蚂蚁,分头并行搜索。

(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。

(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。

(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。

(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。

(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。

(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。

3. 信息素及转移概率的计算:

4. 算法步骤

算法流程图如下:

5. 举例分析

我们假设5个城市的TSP问题,然由于某种原因,城市道路均是单行道,即A->B和B->A的距离不相同,也就是说这是一个不对称的TSP问题。现在城市距离信息如下表:

设置参数:

m=5,α=1,β=1,ρ=0.5,τ_ij(0)=2。

第一次迭代第一只蚂蚁:

第一次迭代第二只蚂蚁

第一次迭代第三只蚂蚁:

第一次迭代第四只蚂蚁:

第一次迭代第五只蚂蚁:

第一次迭代完成,更新信息素矩阵,信息素挥发系数为0.5。

第一代蚂蚁全部累死,重新随机生成第二代蚂蚁进行迭代。

第二次迭代第一只蚂蚁:

第二次迭代第二只蚂蚁:

第二次迭代第三只蚂蚁:

第二次迭代第四只蚂蚁:

第二次迭代第五只蚂蚁:

至此,我们已经发现在第二次迭代的时候,五只蚂蚁走的是同一条路,所以算法收敛结束。    最优路径A->E->D->C->B->A, 最有路径的距离为9.

6. 算法特点:

是一种基于多主体的智能算法,不是单个蚂蚁行动,而是多个蚂蚁同时搜索,具有分布式的协同优化机制。

本质上属于随机搜索算法(概率算法),具有概率搜索的特征。

是一种全局搜索算法,能够有效地避免局部最优。

程序代码
程序中使用到的文件"Chap9_citys_data.xlsx"链接如下:
链接:https://pan.baidu.com/s/1MStyADIrhFtDHoVJUuTjzg
提取码:t24f
————————————————
版权声明:本文为CSDN博主「RavenXRZ」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_35109096/article/details/81126925

%--------------------------------------------------------------------------
%% 数据准备
% 清空环境变量
clear all
clc

% 程序运行计时开始
t0 = clock;
%导入数据
citys=xlsread('Chap9_citys_data.xlsx', 'B2:C53');
%--------------------------------------------------------------------------
%% 计算城市间相互距离
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
    for j = 1:n
        if i ~= j
            D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
        else
            D(i,j) = 1e-4;      %设定的对角矩阵修正值
        end
    end    
end
%--------------------------------------------------------------------------
%% 初始化参数
m = 75;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
vol = 0.2;                           % 信息素挥发(volatilization)因子
Q = 10;                               % 常系数
Heu_F = 1./D;                        % 启发函数(heuristic function)
Tau = ones(n,n);                     % 信息素矩阵
Table = zeros(m,n);                  % 路径记录表
iter = 1;                            % 迭代次数初值
iter_max = 100;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  
Limit_iter = 0;                      % 程序收敛时迭代次数
%-------------------------------------------------------------------------
%% 迭代寻找最佳路径
while iter <= iter_max
    % 随机产生各个蚂蚁的起点城市
      start = zeros(m,1);
      for i = 1:m
          temp = randperm(n);
          start(i) = temp(1);
      end
      Table(:,1) = start; 
      % 构建解空间
      citys_index = 1:n;
      % 逐个蚂蚁路径选择
      for i = 1:m
          % 逐个城市路径选择
         for j = 2:n
             has_visited = Table(i,1:(j - 1));           % 已访问的城市集合(禁忌表)
             allow_index = ~ismember(citys_index,has_visited);    % 参加说明1(程序底部)
             allow = citys_index(allow_index);  % 待访问的城市集合
             P = allow;
             % 计算城市间转移概率
             for k = 1:length(allow)
                 P(k) = Tau(has_visited(end),allow(k))^alpha * Heu_F(has_visited(end),allow(k))^beta;
             end
             P = P/sum(P);
             % 轮盘赌法选择下一个访问城市
            Pc = cumsum(P);     %参加说明2(程序底部)
            target_index = find(Pc >= rand);
            target = allow(target_index(1));
            Table(i,j) = target;
         end
      end
      % 计算各个蚂蚁的路径距离
      Length = zeros(m,1);
      for i = 1:m
          Route = Table(i,:);
          for j = 1:(n - 1)
              Length(i) = Length(i) + D(Route(j),Route(j + 1));
          end
          Length(i) = Length(i) + D(Route(n),Route(1));
      end
      % 计算最短路径距离及平均距离
      if iter == 1
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min_Length;  
          Length_ave(iter) = mean(Length);
          Route_best(iter,:) = Table(min_index,:);
          Limit_iter = 1; 
          
      else
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min(Length_best(iter - 1),min_Length);
          Length_ave(iter) = mean(Length);
          if Length_best(iter) == min_Length
              Route_best(iter,:) = Table(min_index,:);
              Limit_iter = iter; 
          else
              Route_best(iter,:) = Route_best((iter-1),:);
          end
      end
      % 更新信息素
      Delta_Tau = zeros(n,n);
      % 逐个蚂蚁计算
      for i = 1:m
          % 逐个城市计算
          for j = 1:(n - 1)
              Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
          end
          Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
      end
      Tau = (1-vol) * Tau + Delta_Tau;
    % 迭代次数加1,清空路径记录表
    iter = iter + 1;
    Table = zeros(m,n);
end
%--------------------------------------------------------------------------
%% 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
Time_Cost=etime(clock,t0);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
disp(['收敛迭代次数:' num2str(Limit_iter)]);
disp(['程序执行时间:' num2str(Time_Cost) '秒']);
%--------------------------------------------------------------------------
%% 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...  %三点省略符为Matlab续行符
     [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
    text(citys(i,1),citys(i,2),['   ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),'       起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),'       终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['ACA最优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b')
legend('最短距离')
xlabel('迭代次数')
ylabel('距离')
title('算法收敛轨迹')
%--------------------------------------------------------------------------
%% 程序解释或说明
% 1. ismember函数判断一个变量中的元素是否在另一个变量中出现,返回0-1矩阵;
% 2. cumsum函数用于求变量中累加元素的和,如A=[1, 2, 3, 4, 5], 那么cumsum(A)=[1, 3, 6, 10, 15]。

标签:蚂蚁,迭代,Route,ACO,Length,iter,算法,citys,蚁群
来源: https://blog.csdn.net/u013288190/article/details/122799673

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有