ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

NLMeans-A non-local algorithm for image denoising算法分析

2022-01-29 00:01:45  阅读:217  来源: 互联网

标签:non algorithm img denoising cv2 padLength patchWin np sigma


论文名称:A non-local algorithm for image denoising

论文下载:https://www.researchgate.net/profile/Bartomeu-Coll/publication/4156453_A_non-local_algorithm_for_image_denoising/links/0f317534c2cac194e4000000/A-non-local-algorithm-for-image-denoising.pdfhttps://www.researchgate.net/profile/Bartomeu-Coll/publication/4156453_A_non-local_algorithm_for_image_denoising/links/0f317534c2cac194e4000000/A-non-local-algorithm-for-image-denoising.pdf

        05年的论文,比较老的算法,但也比较有代表性。 论文比较好理解,就是认为图像内部有很多相似的块,只要进行块间相似性匹配,如果差异比较小,权重就比较大,差异比较大,权重就比较小,根据相似性进行加权平均,得到滤波后的结果。算法对均值为0的高斯噪声效果较好。由于好理解,就直接贴论文核心部分。

 

        用欧式距离进行块间匹配,差异越小,权重越大,由于图像是有噪声的,所以即使没有噪声的两个块是完全一样的,由于噪声的存在,导致计算出的欧式距离不为0,其期望大概为2*σ2。所以最后在算权重时,需要多减去2*σ2。

 

参该网站上提供的代码,用Python重写了,运行速度很慢,用分辨率低的图做测试比较好。IPOL Journal · Non-Local Means Denoisinghttps://www.ipol.im/pub/art/2011/bcm_nlm/ 

import cv2
import os
import numpy as np


def AddGaussNoise(img, sigma, mean=0):
    # 大概率abs(noise) < 3 * sigma
    noise = np.random.normal(mean, sigma, img.shape)
    img = img.astype(np.float)
    img = img + noise
    img = np.clip(img, 0, 255)
    img = img.astype(np.uint8)
    return img

def AddGaussNoiseGray(img, sigma, mean=0):
    lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
    noise = np.random.normal(mean, sigma, lab[:, :, 0].shape)
    lab = lab.astype(np.float)
    lab[:, :, 0] = lab[:, :, 0] + noise
    lab[:, :, 0] = np.clip(lab[:, :, 0], 0, 255)
    lab = lab.astype(np.uint8)
    img = cv2.cvtColor(lab, cv2.COLOR_Lab2BGR)
    return img

def GetMeandiff(patch1, patch2):
    # patch1 = patch1.astype(float)
    # patch2 = patch2.astype(float)
    diff = patch1 - patch2
    diff = diff.flatten()
    diff = diff * diff
    diffmean = diff.mean()
    return diffmean

def CalculateWeightLut(sigma, h):
    weightLut = np.zeros((256 * 256), np.float)
    sigma2 = sigma * sigma
    h2 = h * h
    for i in range(256 * 256):
        tmp = -max(i - 2 * sigma2, 0.0) / h2
        weightLut[i] = np.exp(tmp)
        if weightLut[i] < 0.0001:
            break
    return weightLut

def NonLocalMeansColor(image, sigma, h, templateWindowSize, searchWindow):
    height, width = image.shape[0], image.shape[1]
    patchWin = templateWindowSize // 2
    searchWin = searchWindow // 2

    # Padding the image
    padLength = patchWin + searchWin
    img = cv2.copyMakeBorder(image, padLength, padLength, padLength, padLength, cv2.BORDER_CONSTANT, value=255)

    img = img.astype(np.float)
    tmpSum = np.zeros((height + 2 * padLength, width + 2 * padLength, 3), np.float)
    count = np.zeros((height + 2 * padLength, width + 2 * padLength, 3), np.int)

    weightLut = CalculateWeightLut(sigma, h)

    for j in range(height):
        for i in range(width):
            padj = j + padLength
            padi = i + padLength
            centerPatch = img[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1, :]
            # print(centerPatch.shape)
            sumWeight = 0
            templatePixel = np.zeros((templateWindowSize, templateWindowSize, 3), np.float)
            for r in range(padj - searchWin, padj + searchWin):
                for c in range(padi - searchWin, padi + searchWin):
                    otherPatch = img[r - patchWin: r + patchWin + 1, c - patchWin: c + patchWin + 1, :]
                    diff = GetMeandiff(centerPatch, otherPatch)
                    diff = (int)(diff)
                    curWeight = weightLut[diff]
                    sumWeight += curWeight
                    templatePixel += otherPatch * curWeight

            if sumWeight > 0.0001:
                tmpSum[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1, :] += templatePixel / sumWeight
                count[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1] += 1

    outImg = tmpSum[padLength:padLength + height, padLength:padLength + width, :]
    outCnt = count[padLength:padLength + height, padLength:padLength + width, :]

    mask = outCnt > 0
    outImg = outImg * mask + image * (1 - mask)

    outCnt = outCnt * mask + 1 - mask

    outImg = outImg / outCnt
    outImg = np.clip(outImg, 0, 255)
    outImg = outImg.astype(np.uint8)

    return outImg

if __name__ == '__main__':
    img = cv2.imread('test3.jpg', 1)

    # img = cv2.resize(img, (600, 750//2), interpolation=cv2.INTER_AREA)
    print(img.shape)
    noiseImg = AddGaussNoise(img, 20, 0)

    denoise = NonLocalMeansColor(noiseImg, 20, 8, 5, 15)

    cv2.imwrite('test_gauss_noise_color.jpg', noiseImg)
    cv2.imwrite('test_gauss_denoise_color.jpg', denoise)

    denoisecv = cv2.fastNlMeansDenoisingColored(noiseImg, None, 10, 10, 5, 15)
    cv2.imwrite('test_gauss_noise_colorcv.jpg', denoisecv)

代码里写的只能处理三通道的彩色图,处理灰度图的话,需要仿造写个函数。运行效果如下,sigma为20的高斯噪声。

噪声图像,sigma=20

去噪效果

fastNlMeansDenoisingColored运行的结果

可以看到,对高斯噪声,已知sigma的情况下,去噪效果还是比较好的,OpenCV自带的部分区域噪声没有去干净,可能和参数有关,他们用的是快速算法,参数也不一样,下次再研究一下。

标签:non,algorithm,img,denoising,cv2,padLength,patchWin,np,sigma
来源: https://blog.csdn.net/zhognsc08/article/details/122738133

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有