ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

[GSEAPY] 在Python里进行基因集富集分析

2021-12-27 18:35:11  阅读:645  来源: 互联网

标签:富集 KEGG gene Python GSEAPY set enrichr 2016


前言

在生物信息学数据分析中,许多分析软件都是基于R开发的。这里介绍一个可以在Python 中进行基因富集分析的Python 软件 GSEAPY (Gene Set Enrichment Analysis in Python)

GSEApy is a python wrapper for GESA and Enrichr.
It’s used for convenient GO enrichments and produce publication-quality figures from python.

GSEAPY

安装

可以通过condapip 进行安装

# if you have conda
$ conda install -c conda-forge -c bioconda gseapy

# or use pip to install the latest release
$ pip install gseapy

pip 安装要是遇到这样的报错

    data = self.read(amt=amt, decode_content=decode_content)
  File "/opt/conda/lib/python3.9/site-packages/pip/_vendor/urllib3/response.py", line 541, in read
    raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
  File "/opt/conda/lib/python3.9/contextlib.py", line 135, in __exit__
    self.gen.throw(type, value, traceback)
  File "/opt/conda/lib/python3.9/site-packages/pip/_vendor/urllib3/response.py", line 443, in _error_catcher
    raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.

可以使用清华镜像,进行安装:

$ pip install gseapy -i https://pypi.tuna.tsinghua.edu.cn/simple

富集分析

背景信息

  • gene set, 指一组具有相同特征的基因。如一个GO term 对应的多个基因,一个kegg pathway对应的多个基因
  • gene set library,多个相关的gene set 。如所有GO term组成一个gene set library.
  • enrichment analysis, gene set library 作为注释基因集合,已知的先验知识。对于一个输入基因集合,富集分析通过计算分析哪些注释gene set 显著存在于输入基因集合中。例如:GO 富集分析中,查看哪些GO terms 显著存在于输入基因列表中。

有多种基因集富集分析策略,我们常说的GO/KEGG 富集分析 应该大多数指over represent analysis(ORA)。还有个常用富集方法叫GSEA(Gene Set Enrichment Analysis), 翻译过来也是基因集富集分析。下文GSEA,特指这种策略。

ORA

测试数据,可以从GSEApy/tests/data下载。
富集的函数是enricher.

先展示一下,富集的代码:

gene_list="./gene_list.txt"
gene_sets='KEGG_2016'
gene_sets=['KEGG_2016','KEGG_2013']

enr = gp.enrichr(gene_list=gene_list,
                 gene_sets=gene_sets,
                 organism='Human', # don't forget to set organism to the one you desired! e.g. Yeast
                 description='kegg',
                 outdir='test/enrichr',
                 # no_plot=True,
                 cutoff=0.5 # test dataset, use lower value from range(0,1)
                )

运行完后,'test/enrichr'目录下存放着会有富集的图片以及文本。

(base) jovyan@95c3096ad9ae:~$ ll test/enrichr
-rw-r--r-- 1 jovyan users  22003 Dec 26 14:59 KEGG_2013.Human.enrichr.reports.pdf
-rw-r--r-- 1 jovyan users  22130 Dec 26 14:59 KEGG_2013.Human.enrichr.reports.txt
-rw-r--r-- 1 jovyan users  25722 Dec 26 14:59 KEGG_2016.Human.enrichr.reports.pdf
-rw-r--r-- 1 jovyan users  48458 Dec 26 14:59 KEGG_2016.Human.enrichr.reports.txt

查看KEGG_2016.Human.enrichr.reports.pdf,图片只显示了前10个,这是由参数top_term=10,所决定的
image.png

同时富集也结果保存在enr.results里,如查看前五个数据

enr.results.head(5)

输出

Gene_set	Term	Overlap	P-value	Adjusted P-value	Old P-value	Old Adjusted P-value	Odds Ratio	Combined Score	Genes
0	KEGG_2016	Osteoclast differentiation Homo sapiens hsa04380	28/132	3.104504e-13	7.885440e-11	0	0	6.659625	191.802220	LILRA6;ITGB3;LILRA2;LILRA5;PPP3R1;FCGR3B;SIRPA...
1	KEGG_2016	Tuberculosis Homo sapiens hsa05152	31/178	4.288559e-12	5.446470e-10	0	0	5.224941	136.763196	RAB5B;ITGB2;PPP3R1;HLA-DMA;FCGR3B;HLA-DMB;CASP...
2	KEGG_2016	Phagosome Homo sapiens hsa04145	28/154	1.614009e-11	1.366528e-09	0	0	5.490501	136.437381	ATP6V1A;RAB5B;ITGB5;ITGB3;ITGB2;HLA-DMA;FCGR3B...
3	KEGG_2016	Rheumatoid arthritis Homo sapiens hsa05323	19/90	2.197884e-09	1.395656e-07	0	0	6.554453	130.668081	ATP6V1A;ATP6V1G1;ATP6V0B;TGFB1;ITGB2;FOS;ITGAL...
4	KEGG_2016	Leishmaniasis Homo sapiens hsa05140	17/73	3.132614e-09	1.591368e-07	0	0	7.422186	145.336773	TGFB1;IFNGR1;PRKCB;IFNGR2;ITGB2;FOS;MAPK14;HLA...

查看enricher函数帮助文档

help(gp.enrichr)
Help on function enrichr in module gseapy.enrichr:

enrichr(gene_list, gene_sets, organism='human', 
            description='', outdir='Enrichr', 
            background='hsapiens_gene_ensembl', 
            cutoff=0.05, format='pdf', figsize=(8, 6), 
            top_term=10, no_plot=False, verbose=False)
......
......

由帮助文档可知enricher函数所需参数如下:

  • gene_list, 所需查询gene_list,可以是一个列表,也可为文件(一列,每行一个基因)
  • gene_sets, gene set library。该参数,有两种形式:
    • 可以设置enricher自带的gene set library 详细列表可见https://maayanlab.cloud/Enrichr/#libraries。可单个'KEGG_2016',或多个['KEGG_2016','KEGG_2013']
    • 一种自定义gene set library。可以是gmt文件,或者输入一个字典
gene_sets={'term_A':['gene1', 'gene2',...], 
           'term_B':['gene2', 'gene4',...], ...}
  • organism,支持(human, mouse, yeast, fly, fish, worm), 自定义gene_set 则无影响。
  • description,工作运行描述
  • outdir; 输出目录
  • background: 背景基因
    • 可以是一个背景基因列表
    • 或者一个背景基因数目
    • 又或者Biomart dataset name.
  • cutoff; pvalue阈值
  • format, 输出图片格式('pdf','png','eps'...)
  • figsize, 图片大小, (width,height). Default: (6.5,6).
  • no_plot:是否不做图

绘图

gseapy 也提供了绘图函数进行绘制

# simple plotting function
from gseapy.plot import barplot, dotplot

# to save your figure, make sure that ``ofname`` is not None
barplot(enr.res2d, title='KEGG_2013',)

image.png

enr.res2d 存储着最近一次查询富集的结果, 上面的例子中, enr.res2d储存的是'KEGG_2013']富集结果,因为它是list最后一个.

gene_sets=['KEGG_2016','KEGG_2013']

enr.results有着所有的富集结果,所以我么也可以挑选数据可视化

barplot(enr.results.loc[enr.results["Gene_set"] == "KEGG_2016",], title='KEGG_2016',)

image.png

气泡图也是有的;

image.png

GSEA

Prerank

Prerank 用于已经排好序的数据来做GSEA。如,根据logFC 从大到小排好序后,去做GSEA。

# gsea_data.gsea_data.rnk 是已经排好序的数据
rnk = pd.read_csv("./gsea_data.gsea_data.rnk", header=None, sep="\t")
rnk.head()
0 1
CTLA2B 2.502482
SCARA3 2.095578
LOC100044683 1.116398
pre_res = gp.prerank(rnk=rnk, gene_sets='KEGG_2016',
                     processes=4,
                     outdir='test/prerank_report_kegg', format='png', seed=6)
pre_res.res2d.head()

image.png

绘图

from gseapy.plot import gseaplot

terms = pre_res.res2d.index
# to save your figure, make sure that ofname is not None
gseaplot(rank_metric=pre_res.ranking, term=terms[0], **pre_res.results[terms[0]])

image.png

未完待续...

参考

https://gseapy.readthedocs.io/en/latest/introduction.html

标签:富集,KEGG,gene,Python,GSEAPY,set,enrichr,2016
来源: https://www.cnblogs.com/huanping/p/15737361.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有