ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

(Python数字图像处理)彩色图像处理---色调和彩色校正以及直方图均衡化

2021-11-06 16:01:06  阅读:233  来源: 互联网

标签:subplot plt img 均衡化 数字图像处理 彩色 直方图 np cv


文章目录


-基于Python+OpenCV,实验环境:pycharm+anaconda,参考《数字图像处理》冈萨雷斯第四版(初学图像处理和Python,欢迎指出错误~)

一、色调和彩色校正

彩色图像可以看做不同彩色通道图像的叠加,每一个通道都可以同灰度图像处理一样进行操作。由于numpy的矩阵操作功能很强大,所以处理彩色图像也是比较方便的。

若采用伽马变换,图像较亮,应该选择γ>1,压缩高灰度级,图像较暗,应选择γ<1,扩展低灰度级,增强对比度。
若采用S函数(对比度拉伸变换函数),选择合适的参数(斜率),能得到较高的对比度,S函数表达式为:s=T(r)=1/(1+(M/r)^E)
s是输出灰度,r是输入灰度,M是控制的灰度中值,E控制函数斜率。形状如下:
在这里插入图片描述
代码如下:

# -*- coding:utf-8 -*-
"""
作者:YJH
日期:2021年11月05日
"""
import matplotlib.pyplot as plt
import cv2 as cv
import numpy as np
from 彩色空间转换 import hsi2rgb              # 从前面写的一个文件里导入自定义的两个函数
from 彩色空间转换 import rgb2hsi

# 显示汉字用
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


# 定义坐标数字字体及大小
def label_def():
    plt.xticks(fontproperties='Times New Roman', size=8)
    plt.yticks(fontproperties='Times New Roman', size=8)
    # plt.axis('off')                                      # 关坐标,可选


if __name__ == '__main__':
    # 读取图片
    img_orig = cv.imread('top_ left_flower.tif', 1)               # 读取彩色图片
# ------------------------------------------------色调校正---------------------------------------------------------#
    # 伽马变换处理
    img_gama = np.power(img_orig.astype(np.float32), 1.5)         # 图像较亮,若采用幂率变换,γ>1,压缩高灰度级
    temp1 = img_gama - np.min(img_gama)
    img_gama = temp1/np.max(temp1)
    # 对比度拉伸变换函数
    med = np.median(img_orig.astype(np.float32))                    # 获取中值M
    img_temp = 1 / (1 + np.power((140/(img_orig+1e-6)), 4.5))       # 4.5为斜率,交互式选择(感觉med效果不如140)
    temp2 = img_temp - np.min(img_temp)                             # 标定到[0~255],才能进行BGR2RGB
    img_con_str = np.uint8(255*(temp2/np.max(temp2)))
    # 显示所用的变换函数
    x1 = np.linspace(img_orig.min(), img_orig.max(), num=200)
    y1 = np.power(x1, 1.5)                                       # 伽马函数

    x2 = np.linspace(img_orig.min(), img_orig.max(), num=200)
    y2 = 1 / (1 + np.power((med/(x2+1e-6)), 4.5))               # 对比度拉伸函数

    plt.subplot(231), plt.title('原图像'), plt.imshow(cv.cvtColor(img_orig, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(232), plt.title('伽马变换'), plt.imshow(cv.cvtColor(img_gama, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(233), plt.title('对比度拉伸'), plt.imshow(cv.cvtColor(img_con_str, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(235), plt.title('s=r**(1.5)'), plt.plot(x1, y1), plt.grid(), label_def()
    plt.subplot(236), plt.title('s=1/(1+(M/r)**4)'), plt.plot(x2, y2), plt.grid(), label_def()
    plt.show()

效果如下:
在这里插入图片描述

二、色调校正及彩色平衡

只经过色调校正并不总能得到满意的结果。常用的处理方法是:
(1)色调校正;(2)彩色平衡校正。
比如下图较暗,所以用γ<1(0.5)的伽马变换来扩展低灰度级。但变换后图像中(前方石头和杂草)偏红色,所以转到CMY空间,对M分量进行平衡。代码如下:(用到的rgb2hsi和hsi2rgb是我自己定义的两个彩色空间变换函数,可以见我另一篇文章彩色空间HSI和RGB变换

# 接上面的代码
# --------------------------------------------彩色平衡---------------------------------------------------------------#
    img_stone = cv.imread('bottom_left_stream.tif', 1)
    # 伽马变换处理
    stone_gama = np.power(img_stone.astype(np.float32), 0.5)         # 图像较暗,若采用幂率变换,γ<1,拉伸低灰度级,交互式选择
    temp = stone_gama - np.min(stone_gama)
    stone_gama = temp/np.max(temp)

    img_cmy = 1 - cv.cvtColor(stone_gama, cv.COLOR_BGR2RGB)
    c, m, y = cv.split(img_cmy)
    # print(m.shape)
    m_gama = np.power(m.astype(np.float32), 1.08)                   # 深红色较多,压缩一下
    temp_m = m_gama - np.min(m_gama)
    m_gama = (temp_m/(np.max(temp_m)))
    out_stone = 1 - cv.merge((c, m_gama, y))

    plt.subplot(131), plt.title('原图像'), plt.imshow(cv.cvtColor(img_stone, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(132), plt.title('伽马变换'), plt.imshow(cv.cvtColor(stone_gama, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(133), plt.title('彩色平衡(深红色)'), plt.imshow(out_stone), plt.axis('off')
    plt.show()

效果如下(好像不明显还行吧
在这里插入图片描述

三、彩色直方图均衡化

同灰度图一样,可以直接用函数cv2.equalizeHist(img),操作RGB每个平面或者HSI空间的I分量。但是这个函数操作对象灰度级要是8bit的,对于[0,1]的灰度级要标定到[0,255],要注意一下。
HSI空间中I分量直方图均衡化后,虽不改变H和S分量,但会影响图像整体颜色。常用处理是先均衡化,再调整饱和度分量S。
代码如下:

# ------------------------彩色直方图均衡化----------------------------#
    img_caster = cv.imread('caster_stand_original.tif', 1)
    h, s, i, caster = rgb2hsi(img_caster)
    img = np.float32(caster)
    i = np.uint8(255*i)
    equ_i = (cv.equalizeHist(i))/255.0                                        # 均衡化亮度分量
    # plt.subplot(121), plt.imshow(i, 'gray')
    # plt.subplot(122), plt.imshow(equ_i, 'gray')
    # plt.show()
    img_equ1 = hsi2rgb(cv.merge((h, s, equ_i)))
    # add_s = np.where((s*2) > 1, s, (s*1.5))                                # 增饱和度
    add_s = np.power(s, 0.85)
    img_equ2 = hsi2rgb(cv.merge((h, add_s, equ_i)))

    plt.subplot(131), plt.title('原图像'), plt.imshow(cv.cvtColor(img_caster, cv.COLOR_BGR2RGB)), plt.axis('off')
    plt.subplot(132), plt.title('I分量直方图均衡'), plt.imshow(img_equ1), plt.axis('off')
    plt.subplot(133), plt.title('均衡I+增大S'), plt.imshow(img_equ2), plt.axis('off')
    plt.show()

效果如下(找不同…):
在这里插入图片描述
欢迎大家批评指正

标签:subplot,plt,img,均衡化,数字图像处理,彩色,直方图,np,cv
来源: https://blog.csdn.net/qq_44926189/article/details/121178739

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有