ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【机械仿真】基于matlab水下机器人机械手系统仿真【含Matlab源码 1264期】

2021-08-29 22:00:06  阅读:249  来源: 互联网

标签:仿真 obj 1264 源码 kinematics uvms Ia zeta omega


一、简介

理论知识参照:基于重心调节的水下机器人—机械手系统姿态控制技术研究

二、部分源代码

classdef UvmsDynamics
    
    properties
        uvms_kinematics;
        tau_c;
    end
    
    properties(Constant)        
        %% Robot System Parameters
        % mass of link
        m0 = 60; 
        m1 = 4.2;
        m2 = 1;
        m3 = 1;

        % inertia matrix of link
        I_0_0 = diag([3.368 3.553 6.244]);
        I_1_1 = diag([19.11*1e-3 15.56*1e-3  7.54*1e-3]);
        I_2_2 = diag([13.97*1e-3 24.66*1e-3 12.19*1e-3]);
        I_3_3 = diag([13.97*1e-3 24.66*1e-3 12.19*1e-3]);
        
        %% Gravitational Acceleration
        g_I = [0; 0; -9.81];       
        
        %% Hydrodynamic Effects
        % fluid density
        rho = 1000;
        
        % drag coefficients
        Cd0 = 0.47; % sphere
        Cd1 = 1.1;  % cylinder
        Cd2 = 1.1;  % cylinder
        Cd3 = 1.1;  % cylinder
    end
    
    methods
        function obj = UvmsDynamics(uvms_kinematics)
            if nargin == 1
                obj.uvms_kinematics = uvms_kinematics;
                obj.tau_c = zeros(9,1);
            else
                error('Not enough parameters');
            end
        end
        
        %% Direct Dynamics
        function obj = DirectDynamics(obj, vf_I, af_I)   
            [M, C, Fe] = obj.GetModelParameters(vf_I, af_I);
            obj.uvms_kinematics.dzeta = M\(obj.tau_c - C - Fe);
        end
        
        %% Model Parameters
        function [M, C, Fe] = GetModelParameters(obj, vf_I, af_I)
            % generalized velocity
            v     = obj.uvms_kinematics.v;
            omega = obj.uvms_kinematics.omega;
            dq1   = obj.uvms_kinematics.dq(1);
            dq2   = obj.uvms_kinematics.dq(2);
            dq3   = obj.uvms_kinematics.dq(3);
            zeta  = obj.uvms_kinematics.zeta;
            
            % rotation matrix
            R_0_I = obj.uvms_kinematics.get_R_0_I();
            R_1_0 = obj.uvms_kinematics.get_R_1_0();
            R_2_1 = obj.uvms_kinematics.get_R_2_1();
            R_2_0 = obj.uvms_kinematics.get_R_2_0();
            R_3_0 = obj.uvms_kinematics.get_R_3_0();
            
            % coordinate origin
            [po_1_0, po_2_1, po_3_2] = obj.uvms_kinematics.GetCoordinateOrigin();
            
            % position vector of center of mass            
            [pc_0_0, pc_1_1, pc_2_2, pc_3_3] = obj.uvms_kinematics.GetCenterOfMass();
            
            % distance vector between C.M.
            [dc_1_0, dc_2_0, dc_3_0] = obj.uvms_kinematics.GetDistanceBetweenCM();
            
            % radius of vehicle
            r0 = (obj.uvms_kinematics.Lx*obj.uvms_kinematics.Ly*obj.uvms_kinematics.Lz/8)^(1/3);
            
            % volume of link
            [V0, V1, V2, V3] = obj.GetVolume();
            
            % inertia matrix of link                        
            [I_1_0, I_2_0, I_3_0] = obj.GetInertiaMatrix();

            % added mass matrix
            [Ia_0_0, Ia_1_0, Ia_2_0, Ia_3_0] = obj.GetAddedMassMatrix();
            
            % gravitational acceleration
            g_0 = R_0_I'*obj.g_I;
            
            % fluid velocity & acceleration
            vf_0 = R_0_I'*vf_I;
            af_0 = R_0_I'*af_I;
            
            %% Coefficients of Derivative of Position Vector 
            % dp
            A_dq1_1 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*pc_1_1;

            A_dq1_2 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*pc_2_2 + po_2_1);
            A_dq2_2 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2;

            A_dq1_3 = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1);
            A_dq2_3 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2);
            A_dq3_3 = R_1_0*R_2_1*obj.uvms_kinematics.z_2_2;

            % ddp
            B_ddq1_1   = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*pc_1_1;
            B_dq1sqr_1 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*pc_1_1;

            B_ddq1_2   = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*pc_2_2 + po_2_1);
            B_ddq2_2   = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2;
            B_dq1sqr_2 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*(R_2_1*pc_2_2 + po_2_1);
            B_dq2sqr_2 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)^2*R_2_1*pc_2_2;
            B_dq1dq2_2 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*pc_2_2;

            B_ddq1_3   = obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1);
            B_ddq2_3   = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2);
            B_ddq3_3   = R_1_0*R_2_1*obj.uvms_kinematics.z_2_2;
            B_dq1sqr_3 = obj.S(obj.uvms_kinematics.z_1_0)^2*R_1_0*(R_2_1*(pc_3_3 + po_3_2) + po_2_1);
            B_dq2sqr_3 = R_1_0*obj.S(obj.uvms_kinematics.y_2_1)^2*R_2_1*(pc_3_3 + po_3_2);
            B_dq1dq2_3 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*(pc_3_3 + po_3_2);
            B_dq1dq3_3 = 2*obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*R_2_1*obj.uvms_kinematics.z_2_2;
            B_dq2dq3_3 = 2*R_1_0*obj.S(obj.uvms_kinematics.y_2_1)*R_2_1*obj.uvms_kinematics.z_2_2;
            
            %% Jacobian Matrix
            % angular velocity
            J_omega_0 = [zeros(3,3) eye(3) zeros(3,3)];
            J_omega_1 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 zeros(3,2)];
            J_omega_2 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 R_1_0*obj.uvms_kinematics.y_2_1 zeros(3,1)];
            J_omega_3 = J_omega_2;

            % linear velocity
            J_v_0 = [eye(3) zeros(3,3) zeros(3,3)];
            J_v_1 = [eye(3) -obj.S(dc_1_0) A_dq1_1 zeros(3,2)];
            J_v_2 = [eye(3) -obj.S(dc_2_0) A_dq1_2 A_dq2_2 zeros(3,1)];
            J_v_3 = [eye(3) -obj.S(dc_3_0) A_dq1_3 A_dq2_3 A_dq3_3];

            % angular acceleration
            J_alpha_dzeta_0 = [zeros(3,3) eye(3) zeros(3,3)];
            J_alpha_dzeta_1 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 zeros(3,2)];
            J_alpha_dzeta_2 = [zeros(3,3) eye(3) obj.uvms_kinematics.z_1_0 R_1_0*obj.uvms_kinematics.y_2_1 zeros(3,1)];
            J_alpha_dzeta_3 = J_alpha_dzeta_2;

            J_alpha_zeta_0 = zeros(3,9);
            J_alpha_zeta_1 = [zeros(3,3) -0.5*obj.S(obj.uvms_kinematics.z_1_0)*dq1 -0.5*obj.S(obj.uvms_kinematics.z_1_0)*omega zeros(3,2)];
            J_alpha_zeta_2 = [zeros(3,3) -0.5*(obj.S(obj.uvms_kinematics.z_1_0)*dq1+obj.S(R_1_0*obj.uvms_kinematics.y_2_1)*dq2) ...
                -0.5*obj.S(obj.uvms_kinematics.z_1_0)*(omega-R_1_0*obj.uvms_kinematics.y_2_1*dq2) ...
                -0.5*(obj.S(R_1_0*obj.uvms_kinematics.y_2_1)*omega-obj.S(obj.uvms_kinematics.z_1_0)*R_1_0*obj.uvms_kinematics.y_2_1*dq1) zeros(3,1)];
            J_alpha_zeta_3 = J_alpha_zeta_2;

            % linear acceleration
            J_a_dzeta_0 = [eye(3) zeros(3,3) zeros(3,3)];
            J_a_dzeta_1 = [eye(3) -obj.S(dc_1_0) B_ddq1_1 zeros(3,2)];
            J_a_dzeta_2 = [eye(3) -obj.S(dc_2_0) B_ddq1_2 B_ddq2_2 zeros(3,1)];
            J_a_dzeta_3 = [eye(3) -obj.S(dc_3_0) B_ddq1_3 B_ddq2_3 B_ddq3_3];

            J_a_zeta_0 = [0.5*obj.S(omega) -0.5*obj.S(v) zeros(3,3)];
            J_a_zeta_1 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_1)*dq1) ...
                -(obj.S(A_dq1_1)*omega-B_dq1sqr_1*dq1) zeros(3,2)];
            J_a_zeta_2 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_2)*dq1+obj.S(A_dq2_2)*dq2) ...
                -(obj.S(A_dq1_2)*omega-B_dq1sqr_2*dq1-0.5*B_dq1dq2_2*dq2) ...
                -(obj.S(A_dq2_2)*omega-B_dq2sqr_2*dq2-0.5*B_dq1dq2_2*dq1) zeros(3,1)];
            J_a_zeta_3 = [0.5*obj.S(omega) -(0.5*obj.S(v)+obj.S(A_dq1_3)*dq1+obj.S(A_dq2_3)*dq2+obj.S(A_dq3_3)*dq3) ...
                -(obj.S(A_dq1_3)*omega-B_dq1sqr_3*dq1-0.5*B_dq1dq2_3*dq2-0.5*B_dq1dq3_3*dq3) ...
                -(obj.S(A_dq2_3)*omega-B_dq2sqr_3*dq2-0.5*B_dq1dq2_3*dq1-0.5*B_dq2dq3_3*dq3) ...
                -(obj.S(A_dq3_3)*omega-0.5*B_dq1dq3_3*dq1-0.5*B_dq2dq3_3*dq2)];
            
            %% Model Parameters
            % inertia matrix (including added mass)
            M0 = [J_v_0; J_omega_0]'*([obj.m0*J_a_dzeta_0; obj.I_0_0*J_alpha_dzeta_0] + Ia_0_0*[J_a_dzeta_0; J_alpha_dzeta_0]);
            M1 = [J_v_1; J_omega_1]'*([obj.m1*J_a_dzeta_1; I_1_0*J_alpha_dzeta_1] + Ia_1_0*[J_a_dzeta_1; J_alpha_dzeta_1]);
            M2 = [J_v_2; J_omega_2]'*([obj.m2*J_a_dzeta_2; I_2_0*J_alpha_dzeta_2] + Ia_2_0*[J_a_dzeta_2; J_alpha_dzeta_2]);
            M3 = [J_v_3; J_omega_3]'*([obj.m3*J_a_dzeta_3; I_3_0*J_alpha_dzeta_3] + Ia_3_0*[J_a_dzeta_3; J_alpha_dzeta_3]);

            M = M0 + M1 + M2 + M3;

            % vector of Coriolis and centripetal terms (including added mass)
            C0 = [J_v_0; J_omega_0]'*([obj.m0*J_a_zeta_0; obj.I_0_0*J_alpha_zeta_0+obj.S(J_omega_0*zeta)*obj.I_0_0*J_omega_0]*zeta ...
                + Ia_0_0*[J_a_zeta_0*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_0*zeta-vf_0); J_alpha_zeta_0*zeta-obj.S(J_omega_0*zeta)*J_omega_0*zeta] ...
                + [obj.S(J_omega_0*zeta) zeros(3,3); obj.S(J_v_0*zeta-vf_0) obj.S(J_omega_0*zeta)]*Ia_0_0*[J_v_0*zeta-vf_0; J_omega_0*zeta]);
            C1 = [J_v_1; J_omega_1]'*([obj.m1*J_a_zeta_1; I_1_0*J_alpha_zeta_1+obj.S(J_omega_1*zeta)*I_1_0*J_omega_1]*zeta ...
                + Ia_1_0*[J_a_zeta_1*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_1*zeta-vf_0); J_alpha_zeta_1*zeta-obj.S(J_omega_0*zeta)*J_omega_1*zeta] ...
                + [obj.S(J_omega_1*zeta) zeros(3,3); obj.S(J_v_1*zeta-vf_0) obj.S(J_omega_1*zeta)]*Ia_1_0*[J_v_1*zeta-vf_0; J_omega_1*zeta]);
            C2 = [J_v_2; J_omega_2]'*([obj.m2*J_a_zeta_2; I_2_0*J_alpha_zeta_2+obj.S(J_omega_2*zeta)*I_2_0*J_omega_2]*zeta ...
                + Ia_2_0*[J_a_zeta_2*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_2*zeta-vf_0); J_alpha_zeta_2*zeta-obj.S(J_omega_0*zeta)*J_omega_2*zeta] ...
                + [obj.S(J_omega_2*zeta) zeros(3,3); obj.S(J_v_2*zeta-vf_0) obj.S(J_omega_2*zeta)]*Ia_2_0*[J_v_2*zeta-vf_0; J_omega_2*zeta]);
            C3 = [J_v_3; J_omega_3]'*([obj.m3*J_a_zeta_3; I_3_0*J_alpha_zeta_3+obj.S(J_omega_3*zeta)*I_3_0*J_omega_3]*zeta ...
                + Ia_3_0*[J_a_zeta_3*zeta-af_0-obj.S(J_omega_0*zeta)*(J_v_3*zeta-vf_0); J_alpha_zeta_3*zeta-obj.S(J_omega_0*zeta)*J_omega_3*zeta] ...
                + [obj.S(J_omega_3*zeta) zeros(3,3); obj.S(J_v_3*zeta-vf_0) obj.S(J_omega_3*zeta)]*Ia_3_0*[J_v_3*zeta-vf_0; J_omega_3*zeta]);

            C = C0 + C1 + C2 + C3;

            % vector of external forces (- Fg - Fb - Ff - Fd)
            vr_1_0_normal = J_v_1*zeta - vf_0 - dot(J_v_1*zeta-vf_0,R_1_0*obj.uvms_kinematics.z_1_1)*R_1_0*obj.uvms_kinematics.z_1_1;
            vr_2_0_normal = J_v_2*zeta - vf_0 - dot(J_v_2*zeta-vf_0,R_2_0*obj.uvms_kinematics.z_2_2)*R_2_0*obj.uvms_kinematics.z_2_2;
            vr_3_0_normal = J_v_3*zeta - vf_0 - dot(J_v_3*zeta-vf_0,R_3_0*obj.uvms_kinematics.z_3_3)*R_3_0*obj.uvms_kinematics.z_3_3;

            Fe0 = [J_v_0; J_omega_0]'*([-obj.m0*g_0+obj.rho*V0*(g_0-af_0); zeros(3,1)] ...
                + [pi/2*obj.rho*obj.Cd0*r0^2*norm(J_v_0*zeta-vf_0)*(J_v_0*zeta-vf_0); zeros(3,1)]);
            Fe1 = [J_v_1; J_omega_1]'*([-obj.m1*g_0+obj.rho*V1*(g_0-af_0); zeros(3,1)] ...
                + obj.rho*obj.Cd1*obj.uvms_kinematics.r1*norm(vr_1_0_normal)*...
                [obj.uvms_kinematics.L1*vr_1_0_normal; 1/2*obj.uvms_kinematics.L1^2*obj.S(R_1_0*obj.uvms_kinematics.z_1_1)*vr_1_0_normal]);
            Fe2 = [J_v_2; J_omega_2]'*([-obj.m2*g_0+obj.rho*V2*(g_0-af_0); zeros(3,1)] ...
                + obj.rho*obj.Cd2*obj.uvms_kinematics.r2*norm(vr_2_0_normal)*...
                [obj.uvms_kinematics.L2*vr_2_0_normal; 1/2*obj.uvms_kinematics.L2^2*obj.S(R_2_0*obj.uvms_kinematics.z_2_2)*vr_2_0_normal]);
            Fe3 = [J_v_3; J_omega_3]'*([-obj.m3*g_0+obj.rho*V3*(g_0-af_0); zeros(3,1)] ...
                + obj.rho*obj.Cd3*obj.uvms_kinematics.r3*norm(vr_3_0_normal)*...
                [obj.uvms_kinematics.L3*vr_3_0_normal; 1/2*obj.uvms_kinematics.L3^2*obj.S(R_3_0*obj.uvms_kinematics.z_3_3)*vr_3_0_normal]);
            
            Fe = Fe0 + Fe1 + Fe2 + Fe3;
        end
        
        %% Volume of Link (assume neutrally buoyant m = rho*V)
        function [V0, V1, V2, V3] = GetVolume(obj)
%             V0 = 4/3*pi*(obj.uvms_kinematics.Lx/2)*(obj.uvms_kinematics.Ly/2)*(obj.uvms_kinematics.Lz/2);
%             V1 = pi*obj.uvms_kinematics.r1^2*obj.uvms_kinematics.L1;
%             V2 = pi*obj.uvms_kinematics.r2^2*obj.uvms_kinematics.L2;
%             V3 = pi*obj.uvms_kinematics.r3^2*obj.uvms_kinematics.L3;
            
            V0 = obj.m0/obj.rho;
            V1 = obj.m1/obj.rho;
            V2 = obj.m2/obj.rho;
            V3 = obj.m3/obj.rho;
        end
        
        %% Inertia Matrix of Link        
        % inertia matrix of link 1 2 3 expressed in frame 0
        function [I_1_0, I_2_0, I_3_0] = GetInertiaMatrix(obj)
            R_1_0 = obj.uvms_kinematics.get_R_1_0();
            R_2_0 = obj.uvms_kinematics.get_R_2_0();
            R_3_0 = obj.uvms_kinematics.get_R_3_0();
            
            I_1_0 = R_1_0*obj.I_1_1*R_1_0';
            I_2_0 = R_2_0*obj.I_2_2*R_2_0';
            I_3_0 = R_3_0*obj.I_3_3*R_3_0';
        end
        
        %% Added Mass Matrix
        % added mass matrix of link 0 expressed in frame 0
        function Ia_0_0 = get_Ia_0_0(obj)          
            % semi-axis of vehicle (a > b)
            a = obj.uvms_kinematics.Lx/2;
            b = (obj.uvms_kinematics.Ly*obj.uvms_kinematics.Lz/4)^(1/2);
            
            e = 1 - (b/a)^2;
            m = 4/3*pi*obj.rho*a*b^2;
            alpha0 = 2*(1-e^2)/e^3 * (1/2*log((1+e)/(1-e)) - e);
            beta0  = 1/e^2 - (1-e^2)/(2*e^3) * log((1+e)/(1-e));
            
            Ia_0_0 = zeros(6,6);
            Ia_0_0(1,1) = -alpha0/(2-alpha0)*m;
            Ia_0_0(2,2) = -beta0/(2-beta0)*m;
            Ia_0_0(3,3) = -beta0/(2-beta0)*m;
            Ia_0_0(4,4) = 0;
            Ia_0_0(5,5) = -1/5 * (b^2-a^2)^2*(alpha0-beta0) / (2*(b^2-a^2)+(b^2+a^2)*(beta0-alpha0)) * m;
            Ia_0_0(6,6) = -1/5 * (b^2-a^2)^2*(alpha0-beta0) / (2*(b^2-a^2)+(b^2+a^2)*(beta0-alpha0)) * m;
        end
        
        % added mass matrix of link 1 expressed in frame 1
        function Ia_1_1 = get_Ia_1_1(obj)
            k1 = obj.rho*pi*obj.uvms_kinematics.r1^2*obj.uvms_kinematics.L1/4;           
            Ia_1_1 = diag([k1 k1 0 k1*obj.uvms_kinematics.L1^2/3 k1*obj.uvms_kinematics.L1^2/3 0]);
        end
        
        % added mass matrix of link 2 expressed in frame 2
        function Ia_2_2 = get_Ia_2_2(obj)
            k2 = obj.rho*pi*obj.uvms_kinematics.r2^2*obj.uvms_kinematics.L2/4;           
            Ia_2_2 = diag([k2 k2 0 k2*obj.uvms_kinematics.L2^2/3 k2*obj.uvms_kinematics.L2^2/3 0]);
        end
        
        % added mass matrix of link 3 expressed in frame 3
        function Ia_3_3 = get_Ia_3_3(obj)
            k3 = obj.rho*pi*obj.uvms_kinematics.r3^2*obj.uvms_kinematics.L3/4;            
            Ia_3_3 = diag([k3 k3 0 k3*obj.uvms_kinematics.L3^2/3 k3*obj.uvms_kinematics.L3^2/3 0]);
        end
        
        % added mass matrix of link 0 1 2 3 expressed in frame 0
        function [Ia_0_0, Ia_1_0, Ia_2_0, Ia_3_0] = GetAddedMassMatrix(obj)
            R_1_0 = obj.uvms_kinematics.get_R_1_0();
            R_2_0 = obj.uvms_kinematics.get_R_2_0();
            R_3_0 = obj.uvms_kinematics.get_R_3_0();
            
            Ia_0_0 = obj.get_Ia_0_0();
            Ia_1_1 = obj.get_Ia_1_1();
            Ia_2_2 = obj.get_Ia_2_2();
            Ia_3_3 = obj.get_Ia_3_3();
            
            Ia_1_0 = zeros(6,6);
            Ia_1_0(1:3,1:3) = R_1_0*Ia_1_1(1:3,1:3)*R_1_0';
            Ia_1_0(4:6,4:6) = R_1_0*Ia_1_1(4:6,4:6)*R_1_0';
            
            Ia_2_0 = zeros(6,6);
            Ia_2_0(1:3,1:3) = R_2_0*Ia_2_2(1:3,1:3)*R_2_0';
            Ia_2_0(4:6,4:6) = R_2_0*Ia_2_2(4:6,4:6)*R_2_0';
            
            Ia_3_0 = zeros(6,6);
            Ia_3_0(1:3,1:3) = R_3_0*Ia_3_3(1:3,1:3)*R_3_0';
            Ia_3_0(4:6,4:6) = R_3_0*Ia_3_3(4:6,4:6)*R_3_0';
        end
    end
    
    methods(Static)       
        % matrix operator performing cross between two vectors
        function out = S(x)
            out = [    0 -x(3)  x(2)
                    x(3)     0 -x(1)
                   -x(2)  x(1)     0];
        end
    end 
end

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、备注

版本:2014a

标签:仿真,obj,1264,源码,kinematics,uvms,Ia,zeta,omega
来源: https://www.cnblogs.com/QQ912100926/p/15203779.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有